

Directorate of Indigenisation Naval Headquarters Ministry of Defence

PREFACE

1. The 2nd edition of *IN's* Swavlamban document 'Swavlamban 2.0' was released by the Hon'ble Raksha Mantri on 04 Oct 2023 as a guideline document enunciating the needs of the Indian Navy towards indigenously developing various equipment/systems/subsystems for various *IN* platforms.

2. In a bid to showcase the continuous growing strength of indigenous defence manufacturing and progress towards the goal of 'Atmanirbharta' (Self-Reliance), the Indian Navy felt the need for a roadmap to enhance R&D in military technology, ensure amalgamation between R&D and manufacturing sector and serve as a guide to integrated approach to users, designers and manufacturers.

3. The document has now been updated to act as a guideline document for Navy's indigenisation requirements. The updated edition of the document 'Swavlamban 3.0' attempts to formulate the requirements of Indian Navy and lists out the equipment/systems/sub systems which can be taken up for indigenisation in the coming years by PSUs, DRDO and private industry partners.

4. The release of 'Swavlamban 3.0' document would further synergise Indian Navy's relationship with the industry and encourage all sectors of industry to come forward and participate in indigenous development of all Naval Systems, with an ultimate aim towards making Bharat self-reliant in the vital domain of defence technology. In accordance with the Hon'ble RM's directives, this document aims to assist in the 'Joint Exercise' for self-reliance with participation of every stakeholder viz Indian Navy, Industry, MSMEs, Academia, DRDO, PSUs and MoD.

एडमिरल दिनेश के त्रिपाठी पी वी एस एम. ए वी एस एम, एन एम नौसेनाघ्यक्ष

Admiral Dinesh K Tripathi PVSM, AVSM, NM Chief of the Naval Staff Tele : 011-23011400, 23011424

E-Mail : cns-india@navy.gov.in

रक्षा मंत्रालय नौसेना मुख्यालय साउथ ब्लॉक, नई दिल्ली 110011 Ministry of Defence Naval Headquarters South Block, New Delhi 110011

MESSAGE

1. 'Navies are meant to be built and not bought'. It is with this foundational belief that the Indian Navy embarked on its quest for self-reliance and indigenisation as early as the 1960s. Since then, Indian Navy has surged ahead in participating with the indigenous industry to enhance and encourage indigenisation of ship/ submarine design, construction material, machinery, equipment and systems, resulting in fast development of defence industry ecosystem.

2. Military superiority is closely intertwined with our nation's defence industrial base, geo-political dynamics, economy and a host of other factors. In the times when technology denials and exorbitant costs of importing technology are becoming more real than ever, it is the responsibility of our local industry to rise to the occasion and provide the necessary technological edge to our armed forces.

3. In the last few years, the Navy has succeeded in indigenous development programmes in partnership with DPSUs, DRDO and private industry, including start-ups and MSMEs to enable strategic capability support and reduced the dependence on other nations for sustainability. The release of 'Swavlamban' document in Aug 2020 and its revised version 'Swavlamban 2.0' in Oct 2023 by Hon'ble RM were the outreach efforts by Indian Navy, which have enabled and encouraged the Indian industry and academia to participate in the Navy's indigenisation efforts.

4. I am confident that 'Swavlamban 3.0' would give a better platform for academia, private sector, MSMEs and start-ups to participate in Navy's indigenisation efforts by further strengthening the partnership of mutual benefit, and take the Navy to unprecedented heights in self-reliance.

(Dinesh K Tripathi) Admiral

वाईस एडमिरल कृष्णा स्वामीनाथन, ए बी एस एम. वी एस एम सह - नौसेनाध्यक्ष

Vice Admiral Krishna Swaminathan, AVSM. VSM Vice Chief of the Naval Staff

Tele : 011-23011435 Fax : 011-21411674 E-mail : vcns@navy.gov.in रक्षा मंत्रालय नौसेना मुख्यालय कमरा नंबर 192-ए, साउध ब्लॉक, नई दिल्ली 110011 Naval Headquarters Ministry of Defence Room No. 192-A, South Block New Delhi - 110 011

MESSAGE

1. The Indian Navy has pioneered 'Atmanirbharta' for over six decades with indigenous design, development and construction at the core of its perspective plans for force structuring and capacity building. With over 64 warships under various stages of construction at Indian shipyards and concurrent efforts at accelerating innovation and indigenisation of state-of-the-art weapons, sensors and spares, the Navy today is at the forefront of the whole-of-the-nation endeavour to develop and support a robust domestic defence industrial base.

2. As a combat-ready force that endeavours constantly to live up to its reputation of being the 'First Responder' and 'Preferred Security Partner' in the Indian Ocean Region, it is imperative for the Indian Navy to engage with the indigenous defence industry closely. The third edition of *Swavlamban 2024*, the Navy's capstone innovation and indigenisation annual event, exemplifies its commitment to support, hand-hold and build a thriving ecosystem with a level playing field for established players and newcomers alike. In doing so, *Swavlamban*, has emerged as an intellectual platform that enables ideation alongside innovation and indigenisation and collaborates actively with the academia, think-tanks, industry partners, start-ups, MSMEs and Ministries of the Government of India (GoI) for this purpose.

3. I am hopeful that this thoughtfully crafted document 'Swavlamban 3.0' will strengthen our collective pursuit for self-reliance and provide us a roadmap that accelerates incubation of advanced technologies and indigenisation, apart from intensifying our synergy with partners in the Indian defence industry.

Jai Hind!

(Krishna Śwaminathan) Vice Admiral

वाइस एडमिरल किरण देशमुख ए वी एस एम, वी एस एम

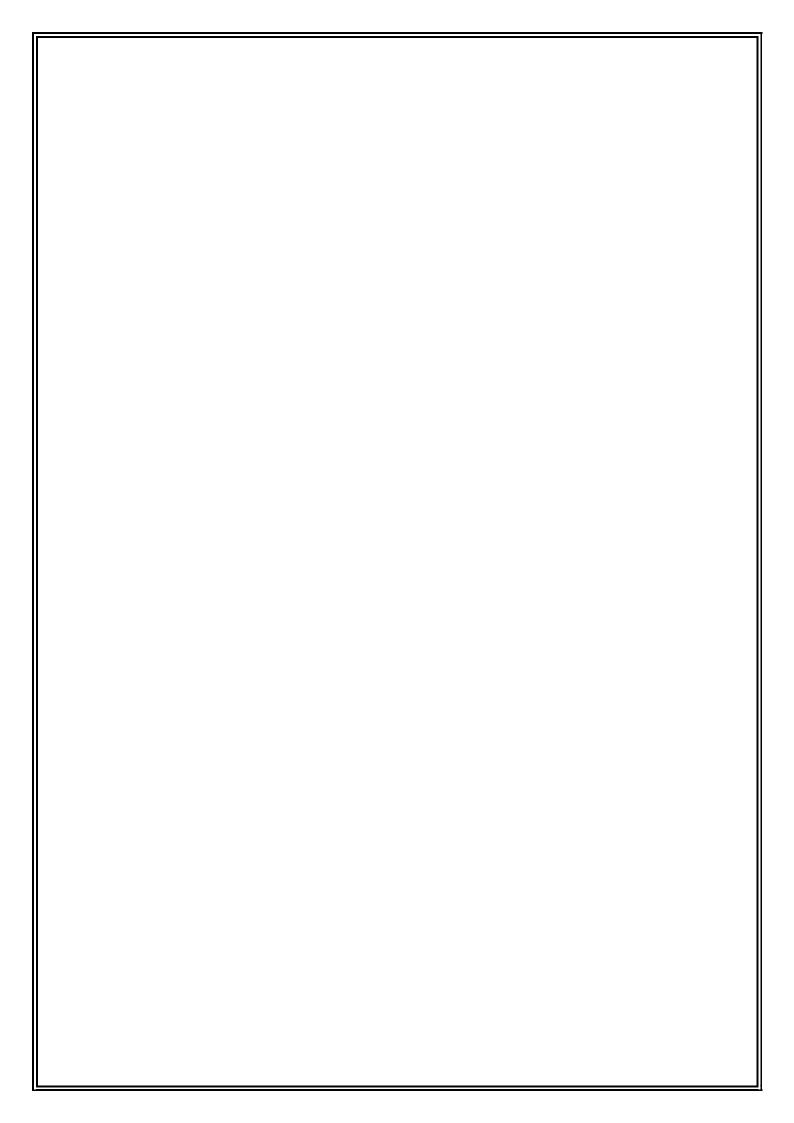
सामग्री अध्यक्ष Vice Admiral Kiran Deshmukh, AVSM, VSM Chief of Materiel Tele / Fax : 011-23011716 E-mail : com@navy.gov.in नौसेना मुख्यालय रक्षा मंत्रालय नई दिल्ली -110011

Naval Headquarters Ministry of Defence New Delhi - 110011

1. The focus of Indian Navy has been to evolve as a modern and combat ready force commensurate with the geo-politics and economic aspirations of the nation guided by economic realities. In order to be effective and efficient at the core tasks, it is imperative that our military arsenal is modern and built upon contemporary technologies. Atmanirbharta is therefore the key for long term security and this can only be achieved by evolving a mature and technologically advanced defence industry, with focus on leapfrogging technology, rather than tail chasing the solutions. It is therefore imperative to focus on indigenous development of Naval Systems and Weapons which can minimise the expenditure on high imports and consequent dependence on other nations for sustainability.

2. Whilst the Indian Navy has achieved good success in ship design, construction and system integration we have some distance to cover to realise complete Aatmanirbharta in terms of naval systems including propulsion and certain weapons & sensors. Our focus is now directed towards a self-reliant industry for Naval systems with a capability to provide scalable technology upgrades and long term sustainability.

3. The 'Swavlamban 2.0' has been updated to act as a comprehensive reference document of indigenisation requirements of the Navy. I am sure that the updated edition, 'Swavlamban 3.0', will provide the Indian Industry with clearer and better defined requirements of Indian Navy which can be taken up for indigenisation in the coming years by PSUs, Private Industry, Academia and DRDO.


Table of Contents

<u>SI.</u> No.			<u>Page</u> <u>Number</u>		
			From	То	
		Part I - Introduction			
1.	Chapter-1	Introduction to Indian Naval Indigenisation Plan	1	12	
2.	Chapter-2	Indigenisation Achieved	13	20	
	•	Part II – Ship Systems			
3.	Chapter-3	Marine Engineering	21	29	
4.	Chapter-4	Submarine Equipment and Systems	30	33	
5.	Chapter-5	Aircraft Handling Equipment	34	34	
6.	Chapter-6	Diving & Special Operations and Hydrographic Equipment	35	36	
	Part	III – Naval Armament, Weapons and Sensor	~ C		
7.	Chapter-7	Weapons and Sensors	37	48	
/.		Part IV – Naval Aviation	57	10	
8.	Chapter-8	Naval Aviation Equipment	49	52	
0.		Part V – Electronics and Electrical Systems	15	52	
9.	Chapter-9	Electrical/ Electronic Systems	53	61	
10.	Chapter-10	Projects completed/ in progress through DRDO/	62	62	
10.		Private Industry	02	02	
		Part VI – Future Technologies			
11.	Chapter-11	Future Technologies	63	100	
	Appendices				
12.	Appendix A	Indigenisation requirement of Equipment and Systems - Marine Engineering	101	102	
13.	Appendix B	Indigenisation requirement of Equipment and Systems - Submarines	103	104	
14.	Appendix C	Indigenisation requirement of Aircraft Handling Equipment	105	106	
15.	Appendix D		107	118	
16.	Appendix E	Indigenisation requirement of Naval Aviation Stores/ Equipment	119	120	
17.	Appendix F	Indigenisation requirement of Electrical/ Electronic Equipment	121	126	
18.	Appendix G	Proposals for projects envisaged to be taken up under 'Make' Category	127	128	
19.	Appendix H	Projects under 'Innovations for Defence Excellence (iDEX)' Scheme	129	136	
20.	Appendix J	Projects under 'Technology Development Fund (TDF))' Scheme	137	138	
21.	Appendix K	Miscellaneous Products to be taken up for Development	139	142	

<u>SI.</u> <u>No.</u>	<u>Chapter/</u> <u>Appendix</u>	<u>Topic</u>	<u>Page</u> <u>Number</u>	
			From	<u>To</u>
22.	Appendix L	Projects completed/in progress through DRDO/	143	148
		Private Industry		
23.	Appendix M	List of Items uploaded on Srijan Defence Portal	149	162
24.	Appendix N	Details of Co-ordinating Directorates	163	163

PART – I

INTRODUCTION

<u>CHAPTER 1</u>

INTRODUCTION TO INDIAN NAVAL INDIGENISATION PLAN

1. The release of first 'Swavlamban' document in Aug 2020 and its revised version 'Swavlamban 2.0' in Oct 2023 by Hon'ble RM were the outreach efforts by Indian Navy, which have enabled and encouraged the Indian industry and academia to participate in the Navy's indigenisation efforts.

2. With the continual thrust towards 'Atmanirbharta' and increased interest of Industry, MSMEs and Academia in the indigenisation program of *IN*, 'Swavlamban 2.0' document has been updated to make it more 'industry friendly'. The updated version 'Swavlamban 3.0' aims to be a comprehensive reference document for indigenisation requirements of the *IN* by listing out the equipment/systems/ subsystems which can be taken up for indigenisation in the coming years.

3. The *IN* has acquired adequate expertise in the hull design and construction of various types of warships. In the field of propulsion systems (barring Marine Gas Turbines and Propulsion Diesel Engines) and related auxiliaries, support services like air conditioning, refrigeration, etc., production capabilities are available in the country. We are also reasonably self-sufficient in power generation and distribution systems, communication systems, Combat Management Systems, Sonars and Electronic Warfare Systems

4. Indigenous development in weapons and their control elements, sensors, Radars, Fire Control Systems, Unmanned Systems, etc, however, fall much below par and need to be pursued with vigor. Although we possess design capabilities and to some extent the production base, considerable performance enhancements are required in the field of underwater weapons and sensors, Multifunction Radars, IT based systems, etc., as their critical subsystems and components are still being imported.

5. The role of the indigenous industry in defence manufacturing sector cannot be over emphasised. The entire industrial might of the country, whether it is the erstwhile Ordnance Factories, Public Sector Units (PSUs), Defence Public Sector Units (DPSUs), large private

industries or Micro, Small and Medium Enterprises (MSMEs), need to partner to achieve the goal of self-reliance of the *IN*. They should become the stakeholders of the plan and not only provide the much needed technical knowhow along with sharing their vast manufacturing experience, but also bring the IN's concepts and proposed capability to fruition in the form of world class defence hardware that would serve the needs of the *IN*.

6. Part I of the document briefly elucidates the Indigenisation Strategy of *IN*, various methodologies, GoI/MoD schemes available for indigenisation, broad requirements of indigenisation in Shipbuilding and Indigenisation achieved so far. Part II-V of the document highlight IN's indigenisation requirements under various categories whereas Part VI deals with the future technologies with Defence Applications relevant to *IN* where industry participation is solicited. In the appendices where the exact indigenisation requirements in various categories are listed out, the Point of Contact for further discussion/information are also listed.

7. <u>Categorisation of Ship's Equipment</u>. The ship-building materials, equipment and systems onboard an *IN* warship can be classified into the following three categories: -

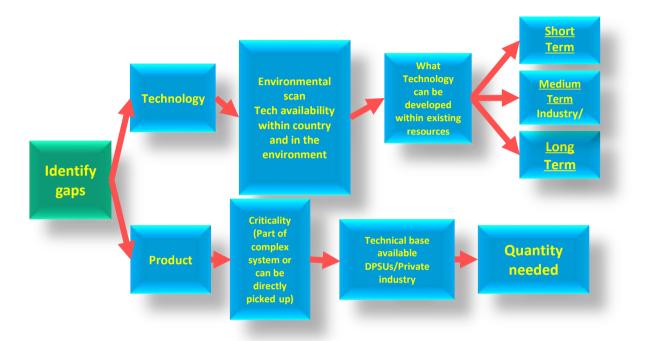
(a) **<u>Float</u>**. This category encompasses all materials, equipment and systems associated with the hull structures and fittings including deck machinery.

(b) **Move**. Equipment under this category encompasses propulsion system, power generation diesel/ gas/ steam turbine engines, alternators, associated control systems (Integrated Platform Management System/ Automatic Power Management System), Auxiliary Equipment/ systems viz. Pumps, AC & Refrigeration plants, Compressors, Switchboards, Communication equipment, Firefighting Systems etc.

(c) **<u>Fight</u>**. Equipment under this category encompasses all types of ship borne weapons & sensors, armament that directly contributes to the combat capability of the platform and Special Operation Missions by MARCOs.

8. **Indigenisation Strategy**. Indigenisation is undertaken at three distinct levels of complexity viz. systems, subsystems and spares level. These are elaborated below: -

(a) **System Level**. This level includes system as a whole and is primarily based on Naval Staff Qualitative Requirements (NSQR). Due to requirement of ab-initio development and inherent complexity, systems have typically been developed by DRDO till date. However in the recent past, efforts to develop some complex systems through Industry Partners have been successful.


(b) **Subsystem Level**. At the second level are the subsystems which form part of individual systems. Subsystems are indigenised based on specifications generated by *IN*. Indigenisation at this level can be undertaken either through a combination of DRDO and industry or by industry alone, depending on the complexity of the technology involved.

(c) **Spares Level**. The third and very important aspect of indigenisation is sustenance of inventory through regular replenishment of spares. These are the low technology, fast moving items which can be indigenised directly by the industry.

9. An indigenisation strategy has been formulated accordingly to bridge the gap between the desired and the existing capability.

10. Till the recent past, indigenisation was focused on import substitution through reverse engineering and was limited to components/ subsystem. This method, though helpful in management of existing inventories, ensured that the *IN* remained saddled with decades old technology. The revised indigenisation strategy is, therefore, focused on technology development in gap areas in addition to requirement based indigenisation.

11. Technology development focusses on the knowledge areas. For each technology area, environmental scan is conducted and technology base available within the country is identified. In order to optimise the developmental timeline, technologies for which feasibility exists are classified into three categories depending upon level of technology and timeframes for indigenisation. Technologies for which sufficient order quantity is available and technology easily accessible are reserved for industry. Where higher level of technology is required, help of academia is sought and technologies which are futuristic in nature or not feasible for development due to cost considerations vis-à-vis numbers involved, are reserved for DRDO.

12. Product development is aimed at indigenisation of a specific product. Development of products is the preferred mode of indigenisation in situations where urgent import substitution is required.

13. **Agencies Involved in Indigenisation**. Though all professional directorates form an inseparable and important part of the indigenisation of equipment/systems/spares, the indigenisation in the *IN* is coordinated by following three agencies for their respective verticals:-

- (a) Directorate of Indigenisation: Ship systems.
- (b) Directorate of Air Projects and Plans: Aviation systems.

(c) Directorate of Armament Production and Indigenisation: Armament systems.

14. **Items Being Imported for Shipbuilding**. The major items used in the ship-building programme that are still being imported and need to be indigenised are tabulated below:-

(a) **Float Category**.

<u>Ser</u>	<u>Type of Equipment</u>	
(i)	Underwater Electrodes (for Ship repair)	
(ii)	Underwater NDT (for Ship repair)	
(iii)	High Grade Composites for Fabrication of items such	
	as Doors, Hatches, Ventilation Flap etc	
(iv)	High Grade Carbon Fiber Reinforced Plastic (CFRP)	
	Composites for Mast & Super Structure	

(b) Move Category.

<u>Ser</u>	Type of Equipment	
(i)	Gas Turbines	
(ii)	Main Propulsion Diesel Engines	
(iii)	Complex Marine Gearboxes	
(iv)	Shafting	
(v)	Propellers – Both Fixed & Controllable Pitch	
(vi)	CFC Free Fire Fighting Systems for Magazines &	
	Machinery Spaces	
(vii)	Arrestor Wires for Flight Operations on Aircraft	
	Carriers	

<u>Ser</u>		Type of Equipment
(viii)	Aircraft Lifts	

(c) Fight Category.

<u>Ser</u>	Type of Equipment	
(i)	Surface to Air Missile	
(ii)	Surface Surveillance Radar [Buy & Make (Indian) in progress]	
(iii)	Air Early Warning Radar [Buy & Make (Indian) in progress]	
(iv)	Satellite Communication System (SATCOM)	
(v)	Aviation Control Suites	
(vi)	Fire Control Systems	
(vii)	Integrated Mast & Control System for Submarines	
(viii)	Mine Hunting and Diver Detection Sonars	
(ix)	Light and Heavy Weight Torpedoes	
(x)	Towed Array Sonars	
(xi)	Unmanned Aerial Vehicles for Surveillance and Delivery of Ordnance/ Autonomous Underwater Vehicles	
(xii)	Global Positioning Systems, Inertial Navigation Systems	
(xiii)	Super Rapid Gun Mounts (SRGMs)	

Methodology/ Indigenisation Routes

15. The procedure followed for indigenisation of stores/systems is as per Chapter 15 of DPM-2009 (<u>through Indian industries</u>) or Chapter IV of DAP-20 (through DRDO). Funds are expended from Minor Heads 110(P), 110(Q) or 110(F) based on extent of production/ R&D activities involved. Additionally, projects are also taken up with Indian Industry through 'Make' category, culminating in procurement under Capital route. Indigenisation projects are progressed under following routes:-

(a) **<u>Revenue Scheme</u>**. This route is exercised through funds allotted to NHQ/MoD under Minor Heads 110(p) –

Indigenous Development and 110(q) – Research & Development.

(b) <u>Make Schemes</u>. Make Schemes are sub-divided into three categories; Make-I, Make-II & Make III and are elaborated in succeeding para 17.

(c) **Technology Development Fund (TDF) Scheme**. The Technology Development Fund (TDF) operated by DRDO was setup in union budget 2014-15. This scheme aims at funding the development of Defence & Dual use technologies. The funding is for public/ private industry especially MSMEs and only Indian vendors including Association of Person are eligible for this scheme. Each project is capped at 50 Crore with a development period of two to four years (https://tdf.drdo.gov.in).

The iDEX (Innovations for Defence Excellence) (d) iDEX. initiative was launched by the Hon'ble PM in Apr 18 with the aim to achieve self-reliance and foster innovation and technology development in Defence and Aerospace by engaging industries including MSMEs, Start-ups, individual innovators, R&D institutes and academia. Defence India Start-up Challenge (DISC) is being launched since then with Problem Statements (PS) from Armed Forces and DPSUs. iDEX has provision of providing funding to shortlisted vendors upto 25 Cr under various schemes (https://idex.gov.in).

(e) **DRDO Projects**. The indigenisation of Naval Armament stores is also progressed through DRDO. DGNAI is the Co-Chairman for the IN-DRDO Synergy - Armament Combat & Engineering (ACE) Cluster.

Indigenisation Methodology at Indigenisation Units

16. Following methodology would be followed for indigenisation:-

(a) **Development Procedures**. The procedure followed for indigenisation of stores are as per Chapter 15 of DPM-2009 (through Indian industries) or Chapter IV of DAP-20.

(b) <u>No Cost-No Commitment (NCNC) Basis</u>. The Production Agencies (PAs) are at times engaged for development of stores on NCNC basis. In such cases, the Indigenisation Cells will generate Paper Particulars (PPs) in association with the Production Agencies (PAs). The store will be declared developed and bulk production may be initiated based on satisfactory trials and approval of NHQ/MoD.

(c) **Indigenisation through DRDO/ Academia**. Stores shall be taken up for indigenisation through DRDO/ Academia wherever feasible, post discussion with respective Development Agencies in Development cum Production Partner (DcPP) mode.

(d) **Sample Based Indigenisation**. In view of large number of stores required to be indigenised and constraints on resources for generation of drawings/ paper particulars, samples will be issued to Development Agencies (DAs) for indigenisation. The DAs shall be responsible for generation of drawings and identification of material, etc. based on the sample provided under the supervision of concerned Indigenisation Units. The RFP would be formulated accordingly.

Indigenisation Through 'Make' Procedure

17. The 'Make in India' initiative of the Government of India, aims to promote the manufacturing sector and increase the contribution of manufacturing output to 25% of GDP. Defence sector is prominent among the 25 sectors of industry covered under the 'Make in India' initiative. The provision of 'Make' category of capital acquisition is a vital pillar for realising the vision behind the 'Make in India' initiative. Hence it is imperative that the 'Make' procedure should be structured to provide the necessary leverage to make adequate investments, build the required capabilities and match up to the contemporary and futuristic requirements of the Indian Armed Forces (https://www.makeinindiadefence.gov.in).

18. The 'Make' procedure addresses the multiple objectives of selfreliance, wider participation of Indian industry, impetus for MSME sector, sound implementation, transparent execution and timely induction of equipment into *IN*. Acquisitions covered under the 'Make' category refer to equipment/ system/ sub-system/ assembly/ subassembly, major components, or upgrades thereof, to be designed, developed and manufactured by an Indian vendor, as per procedure and norms detailed in Chapter III of DAP-2020.

19. Only Indian vendors as defined in Chapter-III of DAP 2020, are eligible for participation under 'Make' program of acquisition. Successful development under this scheme would result in acquisition, from successful Development Agency/Agencies (DA/DAs), through the 'Buy (Indian-IDDM)' category with indigenous design and development and a minimum of 50% IC or under 'Buy (Indian)' category with minimum of 60% IC by inviting commercial bid and thereafter following the procedures detailed in Chapter II of DAP 2020.

20. The sub-category under 'Make' category are further sub-divided into the following:-

(a) <u>Make-I (Government Funded)</u>. Projects under 'Make-I' sub-category will involve Government funding upto 70%, of prototype development cost or maximum 250 crores per Development Agency, released in a phased manner and based on the progress of the scheme, as per terms agreed between MoD and the vendor (iaw Chapter-III of DAP 2020).

(b) **Projects under Make II and Make III**. Projects under Make II and Make III would encompass equipment/ system/ platform or their upgrades or their sub-systems/ sub-assembly/ assemblies/ components/ materials/ ammunition/ software, primarily for import substitution. Under Make II and Make III, no government funding is envisaged for prototype development but there is an **assurance of orders** on successful development and trials of the prototype. Projects under the Make categories, with procurement not exceeding Rs 100 Cr/year based on delivery schedule at the time of seeking AoN will be earmarked for MSMEs. However, if at least two MSMEs do not express interest for a Make programme earmarked for them, the same shall be opened up for all.

(i) <u>Make-II (Industry Funded)</u>. This category essentially pertains to products involving indigenous

design, development and manufacturing. To enable Indian industry to leap frog to higher or complex technology, cases where Indian companies either hold the IPR, including where it has been acquired from the foreign companies, or have the ownership of the design of the main system/equipment, will be deemed to be indigenously designed and developed. Successful development under Make I and Make II would result in acquisition, from successful Development Agency(ies), through the 'Buy (Indian-IDDM)' category with indigenous Design & Development and a minimum of 50% IC on cost basis of base contract price.

Make-III (Industry Funded). This category is (ii) ammunition/ system/ applicable equipment/ to assemblies, etc which although would not be designed/ developed indigenously, but can be manufactured in India as import substitution for product support of weapon systems/equipment held in the inventory of the Services. Indian firms may manufacture these either in collaboration or with ToT from foreign OEMs. In this category, an Indian vendor can enter into a JV with OEM. Schemes under Make III will be procured under the Buy 'Indian' category with a minimum of 60% IC on cost basis of base contract price. However, vendors eligible in Buy (Indian-IDDM) are also permitted to participate under Buy (Indian) category with indigenous design and min. of 50% IC on cost basis of base contract price.

21. <u>Development and Procurement Process under 'Make-III'</u> and 'Make III' Category. The development & procurement process under Make-II and Make III sub-category would broadly involve the following activities:-

(a) Advance Planning & Consultations, and Feasibility Study.

(b) Formulation of Preliminary Staff Qualitative Requirements (PSQR).

(c) Constitution of Project Facilitation Team (PFT).

(d) Categorisation and Accord of Acceptance of Necessity (AoN).

(e) Issue of Expression of Interest (EoI).

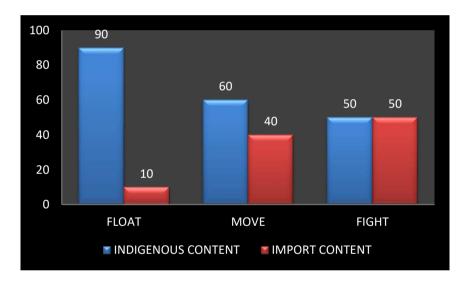
- (f) Evaluation of EoI responses.
- (g) Award of Project Sanction Order.
- (h) Design and Development of Prototype.
- (j) Conversion of PSQRs into SQRs.
- (k) Solicitation of Commercial Offer.
- (I) Single Stage Composite Trials/ User Trials by SHQ.
- (m) Staff Evaluation.

(n) Commercial negotiations by Contract Negotiation Committee (CNC).

(p) Award of Contract.

22. **Defence Acquisition Procedure (DAP) 2020.** It aims to further 'Self Reliance' of the country in the defence sector and facilitate 'Ease of Doing Business' with emphasis on Simplification, Delegation, Reduced Timelines and making the process as Industry friendly as possible. Make in India initiative of the Government of India focuses on increasing participation of Indian vendors including MSMEs, and therefore "Make" procedure has been further refined in DAP 2020 to make it more objective and time bound with focus on Indian Industry specially MSMEs. The visionary FDI policy statement of enhancing FDI in defence will enable in making 'Manufacture in India' a lucrative option for foreign equipment manufacturers (https://www.ddpmod.gov.in/defence-acquisition-procedure-2020).

23. <u>Srijan Defence Portal</u>. Pursuant to Atmanirbhar Bharat, MoD/DDP launched an Indigenisation Portal on 14 Aug 20, named 'srijandefence.gov.in' as an opportunity for Make in India for Defence to give information on items that can be taken up for indigenisation by the Indian industry. On this portal, DPSUs and SHQs display details of their items which have been imported or being imported, which the Indian industry can design, develop and manufacture as per their capability or through joint venture with OEMs. Presently, about 500 items of *IN* have been uploaded in the portal. Major items uploaded on the portal which are still pending for indigenisation are included in this document at **Appendix 'M'**.


24. The Navy as a customer and the industry as a supplier need to have a clear understanding of the requirements and the plan for induction and indigenisation. Keeping this aspect in focus, the Indigenisation requirements of the *IN* have been collated under one head based on current requirements with respect to new induction ships and submarines and life cycle support imperatives of the existing *IN* inventory.

CHAPTER 2

INDIGENISATION ACHIEVED

Background

1. The equipment and machinery fitted onboard ships in the three categories of Float, Move and Fight has been indigenised to the extent of about 90%, 60% and 50% respectively. The analysis of these categories indicates that while sufficient self-reliance has been achieved in the first category and reasonable in second category, there is a large shortfall in the third category. The current indigenous content of the three categories of warship equipment is depicted in the graph below.

Major Systems Indigenised

2. The major equipment and systems developed indigenously by *IN* as part of various ship building programme are as follows:-

(a) <u>Float</u>.

<u>Ser</u>	Equipment/ Material	Indigenising Organisation
(i)	Hull Construction Materials	DRDO / SAIL/ Industry
(ii)	Hangar Doors and Shutters	Industry
(iii)	Anchor Capstans / Windlass	Shipyards/ Industry

<u>Ser</u>	Equipment/ Material	Indigenising Organisation
(iv)	Davits and Boats/ Rigid	Industry
	Inflatable Boats (RIBs)	
(v)	General Service Life Jackets/	Industry
	Hazardous Duty Life Jackets	
(vi)	Foldable Hangar Door	Industry
(vii)	Silicon Rubber Seals	Industry

(b) <u>**Move**</u>.

<u>Ser</u>	Equipment/ Material	Indigenising Organisation
(i)	Steam Turbine	M/s BHEL
(ii)	Boilers	Naval Dockyard,
		Mumbai, M/s Thermax
(iii)	RO Plants	M/s Rochem,
		M/s Technoprocess
(iv)	Pumps	M/s Best & Crompton,
		M/s Alekton,
		M/s BE Pumps
(v)	HP Air and AC Compressors	M/s ELGI Compressors,
		M/s ACCEL
(vi)	AC and Ref Plants	M/s Voltas, M/s KPCL,
		M/s ACCEL
(vii)	Stabiliser System	M/s Veljan Hydrair,
		M/s L&T
(viii)	Gas Turbine Generator	M/s BEL
	(GTG) Control System	M(D D
(ix)	Gas Turbine (GT) /GTG	M/s Precision Power
	Starting Rectifier	Products
(X)	Steering Gear	M/s Veljan Hydrair
(xi)	Motors and Power	M/s Narhari Motors,
	Generation & Distribution	M/s Marine Electricals
	Equipment	
(xii)	Submarine Batteries	M/s Exide, M/s HBL
(xiii)	Inertial Navigation System	DRDO/ RCI
(xiv)	Switchboard and APMS	M/s GE Ltd
(XV)	ATS (Auto Transfer Switch)	M/s Marine Electricals

<u>Ser</u>	Equipm	nent/ Materia) <u> </u>	Indigenising Organisation
(xvi)	HSR (He	elo Starting Red	ctifier)	M/s Static Transformer
(xvii)	Echo	sounder	for	M/s Keltron
	Submar	ines		

(c) <u>Fight</u>.

<u>Ser</u>	Equipment/ Material	Indigenising Organisation
(i)	Electro Optical Director for GMs - SOP	M/s BEL
(ii)	Electronic Warfare Systems	M/s BEL
(iii)	Electro Optical Director for GMs - EON	M/s BEL
(iv)	Gun Fire Control System – Lynx U2	M/s BEL
(v)	Anti-Submarine Warfare Fire Control System (ASW FCS)	M/s BEL
(vi)	Supersonic Missile System	M/s BAPL
(vii)	AK630 and Super Rapid Gun Mount	M/s OFBs/ BHEL
(viii)	Torpedo Tube Launchers	M/s L&T, M/s MDS
(ix)	Combat Management System	M/s WESEE, M/s BEL
(x)	Data Link & Net Centric Operation (NCO) Equipment	M/s BEL
(xi)	Weapon Systems Integration	M/s WESEE
(xii)	Composite Sonar Dome	DRDO
(xiii)	Helo Traversing System	M/s L&T, M/s GRSE
(xiv)	Chaff Launchers	M/s OFB/ MTPF
(xv)	CCS/ VCS	M/s BEL
(xvi)	HF/ VLF Receivers	M/s BEL
(xvii)	HF Transmitters	M/s BEL, M/s HAL
(xviii)	V/UHF sets	M/s BEL & M/s ECIL

<u>Ser</u>	Equipment/ Material	Indigenising Organisation
(xix)	Main Broadcast/ Sound	M/s Phi Audicom,
(1.1.1)	Reproduction Equipment	M/s Linea Engg
(xx)	Rocket Launcher	M/s L&T
(xxi)	Torpedoes	M/s BDL/NSTL
(xxii)	Mines	M/s ARPPL/ NSTL
(xxiii)	ILMEN-GUVK (system for transfer alignment of Ship borne Gyro parameters to Kamov helicopters) for 1135.6 Ships).	
(xxiv)	Helo Deck Communication System (HDCS).	M/s L&T
(xxv)	IntegratedSATCOMMultifunctionAntenna(ISMS)forSSKSubmarines.Submarines.	M/s Navstar
(xxvi)	Sonar USHUS /USHUS II/ TUSHAR	M/s BEL
(xxvii)	Indigenous Cavitation Meter	M/s BEL
(xxviii)		M/s BEL
(xxix)	IAC MOD C	M/s BEL
(xxx)	ATDS Mareech	M/s BEL
(xxxi)	IADS	M/s MDS
(xxxii)	Torpedo Batteries	M/s HEB
	-	M/s HBL
(xxxiii)	30mm Ammunition	M/s EEL
(xxxiv)	Submarine Flare Launcher Basket	M/s Vijay Engineers
(xxxv)	30mm AO-18 Gun Cluster	M/s AWEIL (GSF)
(xxxvi)	Scoop Bulk Head for Torpedo	M/s Sri Vamshee Industrial products
(xxxvii)	Medium Range Microwave Obscurant Chaff	DLJ
(xxxviii)		ARDE

<u>Ser</u>	Equipment/ Material	Indigenising Organisation
(xxxix)	HEDA Ammunition for	M/s MIL (OFK)
	76mm Gun	
(xl)	Chaff Payloads	DLJ
(xli)	Insensitive Munition	HEMRL

3. Other Equipment & Systems Developed.

- (a) Retractable Stabiliser Systems
- (b) Digital GTG Control System

(c) Gas Turbine (GT)/ Gas Turbine Generator (GTG) Starting Rectifier

(d) Deck Hydraulic Systems.

(e) Next Generation Helo Harnessing and Traversing System (NGHHTS)

- (f) Steering Gear Systems
- (g) Stern Windlass
- (h) Fin Stabiliser
- (j) DC Insulation Measuring Unit
- (k) Anchor Mooring Capstan
- (I) Extraction Trolley and Cross Piece for Missiles

(m) **Indigenisation by IUs**. Indigenisation of a large number of marine engineering and electrical/ electronic components viz. valves, compensators, pumps, shafts sleeves, coolers, air reducers, blowers, impellers, heat exchangers, instrumentation, PCBs, etc. have been undertaken/completed by IUs.

4. <u>Oceanology & Meteorology</u>. With an endeavor to contribute towards strengthening the spirit of Atmanirbharta, Directorate of Naval Oceanology & Meteorology (DNOM) has steered the 'Panorama' and 'MAUSM' Projects which will provide Met & Oceanology support to aid the decision makers in planning and understanding evolutions. The details of the projects are mentioned below:-

(a) <u>Marine Weather Forecast Visualisation System</u> <u>'Panorama'</u>

(i) Panorama is a 3D Marine Forecast Visualisation System indigenously developed by CDAC, Pune in collaboration with DNOM.

(ii) Panorama System has successfully replaced the foreign origin weather routing software that were used by *IN* units. The system comprises three modules, of which two modules (Data Deck and Forecast Dashboard) are installed and administered from Indian Naval Meteorological Analysis Centre (INMAC), Kochi and the third, client module called 'SeaView' is installed onboard ships, submarines and establishments across *IN*.

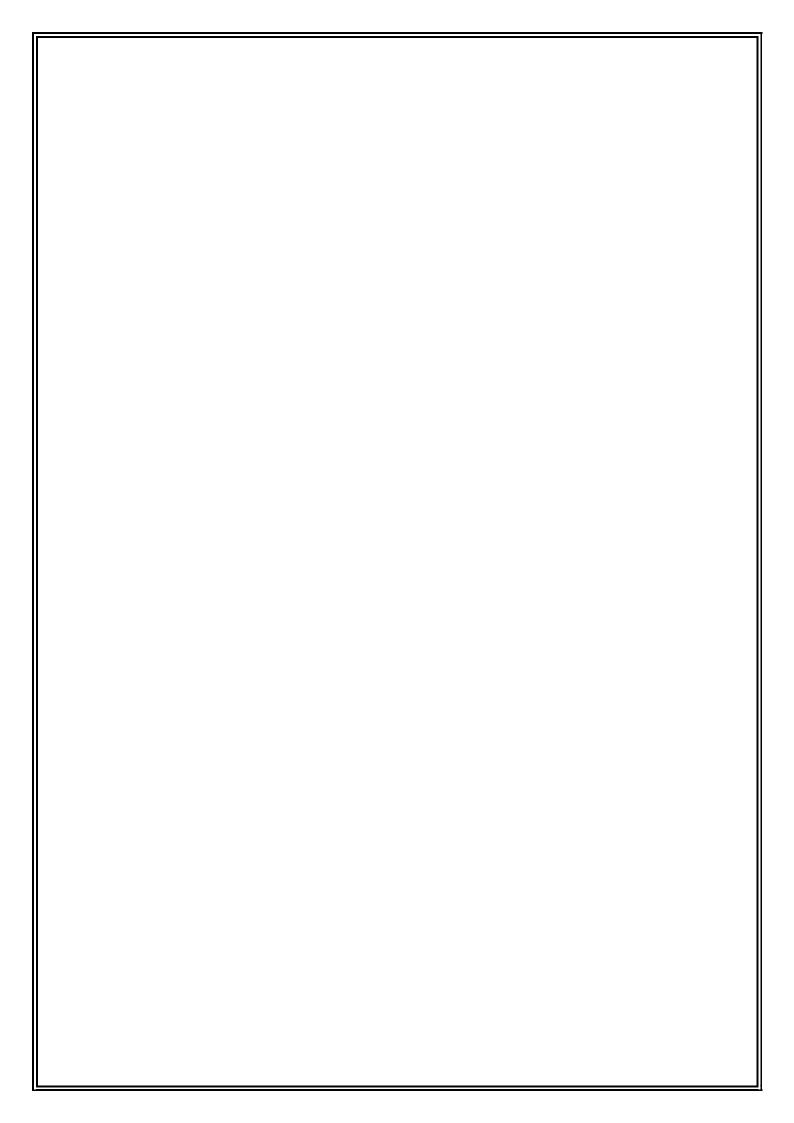
(iii) The system is capable of providing visualisation of marine weather parameters for desired location, with a forecast duration of five days at an interval of six hours.

(b) **Development of 'METOC' Advanced Users** Simulcast Module (MAUSM)

(i) MAUSM application is an in house effort undertaken by DNOM to bridge the gaps on collation, storage and sharing of meteorological sensor data from point of observation across the *IN* in near-real-time.

(ii) The software is deployed at DIT servers, New Delhi for providing real time access/visualisation of graphical & textual representation of latest weather warning, weather forecast, meteorological codes/ reports and observational Met data recorded (hourly/half hourly intervals) at various *IN* Met offices across *IN*. MAUSM uses NUD as the backbone for communicating between the clients (*IN* users) and central server.

(iii) <u>Development of Indian Naval Dynamic</u> <u>Resource for Weather Analysis 'INDRA'</u> <u>Mobile Application</u>


(aa) An indigenous mobile application for weather viz., Indian Naval Dynamic Resource for Weather Analysis (INDRA) was conceptualised by NHQ/ DNOM and developed in partnership with BISAG-N, Gandhinagar. The product, which is an outcome of Met expertise within *IN*, envisages wider utilisation of these services by serving *IN* personnel.

(ab) INDRA provides Naval users with unique products like Sea State and Thermal Inversion. It also has guick access to weather across all naval stations on land and gives area specific warnings over sea as well. The efficacy of INDRA shall only be proved when it is widely utilised by users IN. Feedback/ suggestions across on app improvement in later updates are welcome and will be rationalised by INMAC for future development. The desired end state of INDRA would be its pan-Navy utilisation in lieu of stock/ COTS weather applications.

PAGE LEFT BLANK INTENTIONALLY

PART – II

SHIP SYSTEMS

CHAPTER 3

MARINE ENGINEERING

1. Over past few years there has been considerable success in indigenising major systems like Steering Gear, Stabiliser systems, Reduction Gear (lower power range), deck machinery etc. as replacement for imported ship fits, as well as for major ship/ submarine building programme for Navy. It has infused confidence and will further boost the *IN*-Industry partnership in future projects. Almost all major equipment and systems such as propulsion plants, prime-movers for power generation, air conditioning and refrigeration plants employed on board ships are specifically designed for marine application or are adapted (marinised) from successful commercial models.

2. Warship equipment are designed to inherently meet the following requirements:-

(a) Assured performance in the presence of six degrees of ship motion, significant of which are roll and pitch.

(b) Ability to withstand shock loads.

(c) Appropriate material and metallurgical composition to withstand corrosion and erosion.

(d) Assured performance when submerged /partially submerged and subjected to harsh marine environment.

(e) Wide temperature variation in machinery spaces.

(f) Attenuation of airborne and structural borne noise by appropriate vibration mountings and acoustic enclosures.

(g) Modularity in design to assure high level of maintainability in heavily congested machinery spaces.

(h) Reliable operation in the presence of high levels of humidity, with large Mean Time Between Failure (MTBF).

(j) Minimum maintenance requirements with high Mean Time Between Overhauls (MTBO).

3. Marine Engineering equipment can be broadly classified into following categories: -

(a) Main Propulsion Equipment (Gas Turbines, Diesel Engines, Nuclear/ Steam/ Electric Propulsion).

(b) Prime Movers for Power Generation Equipment.

(c) Auxiliary Equipment (Pumps, AC & Refrigeration Plants, Steering Gear and Stabilisers, HP & LP Air Compressors, Hydraulics & other ship systems).

- (d) Machinery Control Systems/ Equipment.
- (e) Miscellaneous Equipment (Lifts, Firefighting Systems).

Main Propulsion Equipment

4. The main propulsion plant of a warship should have the following essential characteristics: -

(a) Capability of high maximum speed as well as low speeds for loitering and patrolling.

(b) Good endurance and fuel efficient over a wide operating range.

- (c) High availability and maintainability (High MTBF).
- (d) Reversing capability.
- (e) High power to weight ratio.
- (f) Compact and modular construction.
- (g) Low Noise.

5. *IN* currently employs the three conventional propulsion plants i.e. Boilers & Steam Turbines, Diesel Engines and Gas Turbines. Sufficient developments have been made in respect to steam propulsion plants and smaller diesel engines. Indigenously manufactured steam turbines of M/s BHEL and main propulsion diesels of Kirloskar Oil Engines Limited and Cummins India Ltd. are already in use onboard ships. Nuclear propulsion and Integrated Electric Propulsion are also envisaged for future ships & submarines.

6. <u>**Gas Turbines**</u>. Presently all Gas Turbines fitted in *IN* platforms are of foreign origin. Therefore, there is an urgent need to develop indigenous Gas Turbines. Indigenisation initiatives taken in this regard include induction of General Electric LM 2500 Gas Turbine on the basis of its licensed assembly, Inspection & Testing in India with progressive increase in indigenisation. Development of a fully indigenous Kaveri Marine Gas Turbine [marine derivative of Light Combat Aircraft (LCA) gas turbine] is also being pursued at GTRE, Bangalore.

7. **Diesel Engines**. The primary requirement for the diesel engines is to have low noise levels and high availability/ reliability. Although a great degree of self-reliance in lower power range has been achieved, the high power diesel engines built to Naval specifications are largely imported or assembled in India. Indigenous manufacture / development of high power diesel engines to Naval specifications will greatly reduce our dependence on imports. In addition, the following specific requirements also exist:-

(a) **Motor Boat Engines**. The Survey Motor Boats (SMB) and the Rigid Inflatable Boats (RIBs) including for Special Operations, are powered by diesel engines in the power range of 100-250 HP. These engines are to be of lightweight and rugged in design with high Mean Time Between Overhaul/ Failure (MTBO/ MTBF). The survey motorboats are operated at sea for 8 to 10 hours continuously.

(b) **Non-Magnetic Engines**. The minesweeping vessels are fitted with non-magnetic 250 HP engines. Due to the specific role of the ships, it is essential that engines onboard these ships

are to be built with non-magnetic characteristics. Presently, no indigenous industry is manufacturing non-magnetic engines.

8. **<u>Reduction Gear</u>**. For efficient power transmission to the propeller, marine gearboxes should possess the following essential features:-

(a) Higher hardness of pinion and gear materials with attendant higher gear tooth loadings.

(b) High efficiency and reliability.

(c) Long life.

(d) Low noise levels.

(e) High MTBO and MTBF.

9. Gearbox generated noise is a major factor in the overall under water noise signature of ship. Presently some gearboxes of ships are being manufactured in India by M/s Elecon, under joint venture with M/s Renk, Germany and M/s Walchand Industries in collaboration with DCNS/ Naval Group, France. There is a requirement of gearboxes with greater indigenous content in the range of 1-50 MW for the newer platforms.

10. **Shafting/ Controllable Pitch Propellers (CPP)**. Some headway has been made in indigenous development of Fixed Pitch Propeller (FPP) shafting systems with foreign collaboration, wherein, the critical components such as propeller, stern tube bushes, 'A' Bracket Bushes, Plummer Block bearings are still being imported. The import content in case of Controllable Pitch Propeller (CPP) based shafting systems is much higher. There is a need to indigenously develop CPP shafting systems with greater indigenous content for future projects.

11. **Propulsion System Integration**. The propulsion system comprises power plant (Diesel Engine/ Gas Turbine/ Steam Turbine or combination of these), Reduction Gear, Shafting, Propulsion system auxiliaries and Control System. These major

elements are to be sized and suitably coupled/ integrated to ensure optimum performance of the entire system under various operating profiles of the ship. Presently, expertise for this critical task of system integration is not available within the country and therefore, *IN* is dependent on foreign sources. With a large number of ships being inducted under the indigenous ships building programme, there is a need for Indian industry to acquire adequate expertise and in-house competence in Propulsion system machinery selection, design and integration.

12. <u>Air Independent Propulsion (AIP) Solutions for</u> <u>Submarines</u>. *IN* is also exploring AIP solutions for powering submarines as it offers considerable tactical flexibility. Operational considerations like low noise, shallow water capability, size and manoeuvrability issues have garnered Navy's interest in non-nuclear AIP solutions. Indigenous competence in this field is still lacking or is at a very nascent stage and is required to be built up to the range of 225 to 250 KW for retro-fitment on the existing submarines/ incorporation in the new designs.

Prime Movers for Generators

13. Diesel Engines, Steam Turbines and Gas Turbine prime movers are presently used onboard *IN* ships for power generation. Diesel Engines in the medium power range (50KW - 1500KW) and Steam Turbines (500KW - 1000KW) are used for power generation.

14. Indigenous development / licensed production of Diesel Engine and Gas Turbine prime movers in the higher power range (1 to 3 MW) will enable import substitution and also provide prompt and reliable product support for the Navy.

Machinery Controls & Instrumentation

15. <u>Machinery Control Systems</u>. To ensure substantial indigenisation in the design of all machinery control systems and to ensure standardisation, these systems have been evolved around open architecture standards. This has enabled indigenous availability of core hardware as well as software of machinery controls on all new construction ships. For existing ships, conversion to indigenous

equivalent designs has also been planned in a phased manner. M/s L&T has taken up indigenisation on this front.

16. There exists a need to initiate indigenisation of equipment and its spares to attain self-sufficiency and preclude dependence on the foreign firms for ships procured from foreign countries, viz., Vikramaditya, Talwar class, etc. However to begin with, indigenisation of spares/ components of critical equipment/ systems need to be initiated, so that indigenous replacements of equipment/ parts are available during the ship's first Medium Refit (MR).

17. Boiler tubes, refractory items, certain steam auxiliaries and MD pumps fitted onboard western origin ships like 'G' class, 'B' class and Viraat have been successfully indigenised in the past.

18. Further, indigenisation of certain items related to Engineering Equipment/ Systems has already been initiated for INS Vikramaditya. The present status is indicated below:-

(a) Identification of indigenous equivalents/ sources for Russian origin and Customer Nominated Equipment (CNE) and POLs.

(b) Identification of indigenous equivalents/ sources for 18 chemicals and consumables.

(c) Development of 16 types of mechanical seals specific to the ship by Ms General Seals, Mumbai has also been initiated.

(d) Identification of equivalents for Russian origin bearings viz ball, roller, single row etc. through M/s Bharat Trading Corporation, Mumbai has been initiated.

Indigenisation Envisaged

19. The list of critical equipment for which spare parts/ components could be taken up for indigenisation are as follows:-

(a) Turbo Driven steam auxiliaries

- (i) Turbo-driven Fuel Pumps
- (ii) Turbo Blower Units
- (iii) Feed Condensate Booster Turbo driven Pumps
- (iv) Turbo-driven Main Circulating Pumps
- (v) Turbo-driven Oil Pumps
- (vi) Turbo-drive of AC Plants
- (b) Feed Water Pumps
 - (i) Automatic Working Water Pumps
 - (ii) LPSG Feed Pump
 - (iii) Condensate Feed Pump
 - (iv) Pump for Boiler Chemical Treatment
 - (v) Hand Pump for Boiler Dosing
 - (vi) Proportioning Pump for Boiler Dosing
 - (vii) Condensate Feed Pump for TA

(c) Lub Oil and Fresh Water/Feed Water Heat Exchangers which are fitted in various equipment/systems.

- (d) Fuel Pumps
 - (i) Fuel Transfer Pumps
 - (ii) Stripping Pumps
 - (iii) Manual Pumps for Aviation Fuel (AVCAT)
- (e) Lub Oil Pumps

(i) Transfer Pumps

- (ii) Hand Pumps
- (f) Sea Water Pumps
 - (i) AC Condenser Sea Water Cooling Pumps
 - (ii) Seawater Circulating Pumps
 - (iii) Fire Pumps
- (g) Fresh Water Pumps
 - (i) Pumps for De-Mineralised water system
 - (ii) Pump for Technical Fresh water
- (h) Desalination Plant Pumps
- (j) Bilge system Pumps
 - (i) Main Drainage Pumps
 - (ii) Portable Pumps
- (k) Hydraulic Pumps
 - (i) Transfer Pumps
 - (ii) Manual Pump
 - (iii) Variable Discharge Pumps
 - (iv) Hydraulic Pumps for Aircraft Arresting Gear and Lifts

(I) Shafting Components viz. Plummer Bearings, Thrust Pads etc.

(m) Lub Oil Coolers, Condensers and Evaporators of Motor Driven AC Plants and Turbo Driven AC Plant.

(n) Components of Boiler and Turbine Aggregates Control Systems.

(p) Filters of Lube Oil System.

20. The following equipment/ system are also required to be indigenised:-

(a) Boiler Mounting for K(B)(G)-3(D) Boilers and 1500KW Turbo Generator.

(b) Waterjet Propulsion System (being progressed as part of TDF scheme).

(c) Composite Material Air Bottles (being progressed as part of TDF scheme).

(d) Composite Material Sea Water Pump (being progressed as part of iDEX scheme)

(e) Specialised SV Mount.

NBCD Equipment

21. Development of fixed FF system for machinery compartments is being progressed by DRDO/ Centre for Fire Explosives and Environment Safety (CFEES). The production of this system may also be progressed by industry in partnership with the developing agency.

Indigenisation Requirements

22. A list of requirement for indigenisation of Marine Engineering equipment and systems is placed at **Appendix 'A'**.

CHAPTER 4

SUBMARINE EQUIPMENT AND SYSTEMS

1. Private industry has partnered with the *IN* towards indigenous development of equipment, systems and components for submarines including the strategic platforms. Successful development of many such equipment/ systems for the critical platforms has given the Navy adequate confidence in the Indian Industry for development of technologically complex systems. This has further led to change in approach by the Navy to involve Industry for the support of the existing platforms for which most of the equipment was being imported till very recently.

Existing Submarine/ Equipment

2. Some examples of indigenisation which have been progressed in the recent past include:-

- (a) Hydraulic oil accumulators
- (b) Fuel flow meters
- (c) System filters
- (d) Pumps
- (e) Cables
- (f) Batteries
- (g) Heat Exchangers

(h) Instrumentation Components viz. Transducers and Parameter Indication Devices

(j) Diesel Engine Monitoring System

(k) Anechoic Tiles, Submarine Acoustic Coating and other types of Submarine Acoustic Coatings such as Vibro-damping Coatings and Silencers.

3. Equipment/ systems envisaged for fitment on indigenous underwater platforms are as listed below:-

(a) High Density Valve Regulated Lead Acid Batteries for Submarines.

(b) Compact High Capacity Turbines.

(c) Main Motor Generators.

(d) Propulsion Motors.

(e) Non Hull Penetrating Submarines Masts.

(f) Optics for Submarine Masts.

(g) Integrated Sonars.

(h) Control and Monitoring Systems Based on Versa Module Europa (VME) / Programmable Logic Controllers (PLCs) with Fibre Optic Backbone.

(j) Inner and Outer Exhaust Flap Assemblies.

(k) Wet Deck Shelters for Special Operations Missions.

4. <u>**Technologies**</u>. Major technologies relevant to underwater platforms which may be taken up for development are enumerated below:-

(a) Phosphoric Acid Fuel Cell Technology for Air Independent Propulsion system.

(b) <u>Acoustic Signature Management</u>. The following equipment / systems need to be developed towards acoustic signature management onboard submarines:-

(i) Raft Mounting System for Propulsion System and Auxiliaries.

(ii) Tuned Mass Dampers & Pneumatic Shock Mounts for < 200 kgs Equipment.

(iii) Enhanced Shelf Life Rubber Shock Mounts.

Project -75/ 75(I) Submarines

5. The construction of submarines under the Scorpene project is progressing at Mazagon Dock Limited (MDL) under ToT from DCNS/Naval Group, France. Further, P 75(I) submarine project is being planned through the 'Strategic Partnership' route. This offers an excellent opportunity for indigenous development of equipment and systems as per the provisions of the contracts. Few of the equipment and systems proposed to be indigenised are as follows:-

- (a) Steering Gear
- (b) Shafting
- (c) Reduction Gear
- (d) AC Plants.
- (e) Ref Plant
- (f) Compressors
- (g) Pumps
- (h) De-Mineralised Water (DM) Plant
- (j) Accumulators
- (k) Various Types of Filters
- (I) System Valves

(m) Electrical Equipment viz. Motors, Power Distribution Centers etc.

Indigenisation Requirements

6. List of requirement for indigenisation of equipment/ systems for submarines is placed at **Appendix `B**'.

CHAPTER 5

AIRCRAFT HANDLING EQUIPMENT

1. With the induction of 2nd Aircraft carrier, industry support is being sought for the development and maintenance of various handling and support equipment onboard this ship. Large number of equipment for handling aircrafts/ arms/ ammunition onboard ships is required by Navy. Some of the equipment used onboard and being imported presently which need to be indigenised are enumerated below:-

(a) Ship Based Hoisting and Lifting Equipment (Aircraft / Vehicle Lifts and Cranes)

(b) Automatic Aircraft Landing System (Microwave / Electronic ACLS) for indigenous fixed wing Aircraft

(c) Carrier Based Fixed Wing Aircraft Arrester Wire Recovery System

- (d) Aircraft Catapult Launch System
- (e) Flight Deck & Hangar Fixed Fire Fighting System
- (f) Aircraft Traversing System

Indigenisation Requirements

2. A list of requirement for indigenisation of Aircraft Handling Equipment is placed at **Appendix 'C'**.

CHAPTER 6

DIVING & SPECIAL OPS. AND HYDROGRAPHIC EQUIPMENT.

1. Special Operations and Diving equipment, by virtue of the unique requirement, inherently need to be based on high end technology. However, these equipment are required in limited numbers and also have a limited shelf life. Considering these aspects, the following equipment have been identified for indigenous development and production:-

(a) Thermal Night Vision devices with advanced optics and user defined sizes based on application ie worn by human, weapon mounted sight etc.

(b) **<u>Communication Systems</u>**. Communication is the backbone of any Special Operation and every team should have a reliable and rugged communication system. Following to be developed indigenously:-

- (i) Software Defined Radios
- (ii) Satellite Communication Sets
- (iii) Remotely Deployable Command and Control System

(c) **Specialised Crafts for Special Operations and Diving Operations**. Discreet induction of Special Forces in Area of Operations is paramount for a successful mission. Specialised crafts are, therefore, an indispensable part of the planning process. Indigenisation in this field would be a great capability enhancer for special operations in the *IN*.

(d) Air Diving Sets and Closed Circuits Oxygen diving sets with Full Face Masks/Mouth piece for diving operations up to various depth and capable of stand-alone as well as Surface Demand Modes.

(e) Man-Portable Unmanned Aerial Vehicle with following capabilities:-

(i) Ordnance delivery

(ii) Day/night aerial surveillance of enemy targets

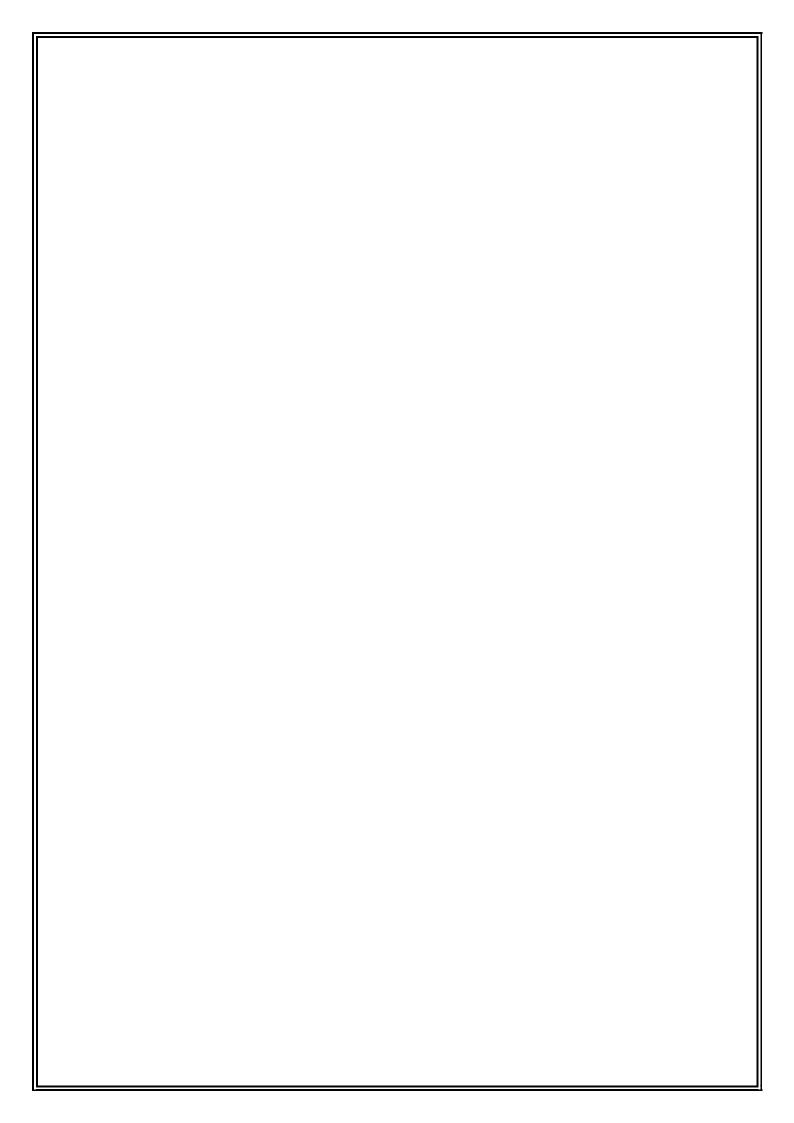
(iii) Relay of information between deployed teams and commend post

(iv) Capability of being launched and recovered from a mobile platform eg RHIB, rubber dinghy and surface vehicle

(f) Under Water Diver Lamps, complying to weight/ buoyancy restrictions, diving certifications and light intensity requirements for efficient diving operations.

HYDROGRAPHIC EQUIPMENT.

2. Hydrographic Equipment are specialised systems which are required for mapping coastal areas, deep oceans and collecting environmental/ physical parameters at sea. Since the data is used for making navigational charts, ENCs, products and publications used by international shipping and wide range of users in maritime domain, the data collected by hydrographic equipment is required to comply with quality standards promulgated by International Hydrographic Organisation (IHO). The equipment is COTS in nature, however there are very few users of the equipment in India (including few scientific organisations). Following equipment have been identified for indigenous development and production: -


(a) Long endurance survey grade drones with capability to land/ take off from ship's helicopter deck

(b) Autonomous Survey Craft along with Launch & Recovery System for development from ship equipped with Multi-beam Echo- Sounder for surveying in coastal waters.

- (c) Water Level Meter for remote observation of tidal data.
- (d) Sound Velocity Profilers and Conductivity- Temperature-Depth Probe.
- (e) Current meters for measuring currents in coastal waters.

PART – III

NAVAL ARMAMENT, WEAPONS AND SENSORS

CHAPTER 7

ARMAMENT, WEAPONS AND SENSORS

1. **<u>Background</u>**. At independence, India's defence-industrial production was mainly coming from the existing Ordnance Factories. The *IN* in the early 80s embarked on indigenisation of fast moving components. Of late, NA stores are being indigenised through ab-initio design and reverse engineering using in-house expertise.

2. <u>Categorisation of Naval Armament Stores</u>. Naval Armament stores can broadly be categorised into the following:-

(a) Missiles (Air-to-Air, Air to Surface, Surface to Air, Surface to Surface and Shoulder launched).

- (b) Torpedoes (Air, Ship and Submarine launched).
- (c) Mines.
- (d) Bombs and Mortars.
- (e) Depth Charges.
- (f) Underwater Rockets and Launchers.
- (g) Guns and Ammunitions.
- (h) Small Arms and Ammunitions.
- (j) Countermeasures (Decoys and Deceivers) and launchers.
- (k) Pyrotechnics stores.
- (I) Demolition Charges.
- (m) Special Arms and Ammunition for MARCOS.
- (n) Power Cartridges.

3. India has one of the largest defence industrial complexes in the developing world. It consists of sixteen Defence Public Sector Undertakings (DPSUs), and an emerging vibrant private sector. Vital

value addition to the effort of this conglomerate is provided by 52 Defence Research and Development (R&D) laboratories under the umbrella Defence Research and Development Organisation (DRDO).

4. State of the art ships and submarines are under construction at Indian shipyards, both public and private. Indigenisation of armament will not only propel the *IN* to be self-reliant but also cut down costs and reduce dependence on foreign vendors.

5. **Indigenisation in** *IN*. Indigenisation of ship borne weapons/ armament is very challenging and complex in nature. The indigenisation efforts of *IN* in the field of Armament Technology is spearheaded by DGNAI. The seamless synergy amongst various stake holders has culminated in successful indigenisation of a variety of critical NA Stores paved way for meeting the operational requirements of seagoing platforms through indigenous means.

6. Indigenisation of armament for Kavach chaff system (launcher & rockets), AK 100 ammunition, AK 630 ammunition, 40/60 modified ammunition, 76/62 SRGM ammunition sub-assemblies, 140mm rocket, RGB-12 and RGB-60 rockets has been undertaken in association with (erstwhile) OFB. In addition, a number of explosives for RZ-61 & P-series missiles, propellant for Torpedo Impulse Ctge, re-filling of warheads of missile, torpedo, depth charge, bomb, etc. have been developed. However, despite all this, we have achieved only about 50% indigenisation in the 'Fight Category'. Development of insensitive munitions, torpedo scoop bulkhead, 30 mm AO-18 cluster, alternate source of 30mm ammunition, 30mm proximity shell, 76mm HEDA shell, Chaff Payload, Microwave Obscurant chaff etc. have been developed recently.

7. A multipronged approach for development of shipborne weapons/ armaments is being taken; one to harness the R&D potential at DRDO and the other through expertise of Private Industry. Thus there is much scope for improvement in this areas.

Underwater Systems

8. Underwater systems mainly consist of torpedoes, decoys, rockets and underwater mines. Over the years there has been

considerable amount of indigenisation in terms of primary and secondary batteries of torpedoes, torpedo launchers and ASW rockets launchers, explosive filling of depth charges etc.

9. Presently, *IN* holds a large number of torpedoes imported from western origin countries and of eastern origin. There is a huge opportunity for the private industries to contribute in indigenous development of the following sub-systems of torpedoes:-

(a) <u>Homing System</u>. It is a vital component of the torpedo. The homing system mainly consists of a transmission & receiving circuit, transducer, amplifier for the amplification of incoming signals, logic unit for data processing. Presently, the entire homing systems of the torpedoes are of foreign origin. There is an urgent need to indigenously develop the homing systems.

(b) **Warhead and Exploders**. Though sufficient expertise for refurbishment of warheads has been achieved through OFs for some torpedoes, there exists a larger opportunity with private industries for indigenous development of warheads and exploders torpedoes. There is a need to indigenously develop the payload, casing, fuze and safety & arming device(SAD)/ exploders.

(c) **Exercise Head**. The purpose of the exercise head is to record various signals within the torpedo during practice firings. It comprises various sub units viz: recording, surfacing, locating and recovery aids. Sufficient expertise has been achieved in development of surfacing aids such as rubber floats from private industries. However, there exists a need for indigenous development of recorders, actuators, compressed air bottles, electro explosive devices, smoke markers, noise makers etc.

(d) **Propulsion System**. Batteries are used to propel the torpedo. The propulsion batteries are either primary or secondary type. Primary batteries are single shot battery whereas secondary batteries are of rechargeable in nature. The batteries which are used in the IN are usually of AgO-Zn or sea water activated batteries (Mg-AgCl). In light of recent

advancement of Lithium Ion battery technology worldwide, there is a requirement to indigenously develop long lasting and higher endurance batteries in order to achieve better endurance of the torpedo. Indigenous manufacture / development of high power batteries to naval specifications in the higher power rating will greatly reduce our dependence on imports.

(e) <u>**Control System**</u>. The control system of the torpedo caters for regulating the course, depth and roll of the torpedo. Currently, the entire control system of the torpedo are of foreign origin. Indigenous development of course gyro mechanisms, servo actuators for rudders etc is required.

(f) <u>After Body and Tail Unit</u>. The after body of the torpedo mainly consists of propeller shaft, propellers, sealing mechanism rubber 'O' rings etc. Sufficient scope exists for the large variety of these sealing mechanisms and 'O' rings could be taken up for development by Indian manufacturers.

10. *IN* has indigenised underwater rockets, Depth charges, limpet mines, Processor based ground mines, which are primarily used for combat role against submerged submarines and incoming torpedoes.

11. Other underwater NA stores like anti torpedo countermeasure system are being imported. Indigenous development / licensed production of anti-torpedo countermeasures will enable import substitution and also provide prompt and reliable product support for the Navy.

12. **Indigenisation Envisaged**. The list of equipment for which spare parts/ components could be taken up for indigenisation are as follows:-

(a) Homing Heads of Torpedoes of Eastern and Western Origin Countries.

(b) Warheads and Exploders.

(c) Exercise Heads and its Components.

(d) Rubber Floats and Recovery Aids of Torpedoes.

(e) Elastomers used as Sealants in Propulsion Systems and Propellers.

(f) Anti Torpedo Countermeasures.

Ordnance/ Gun Systems

13. The ordnance/ gun systems held in the *IN* inventory are predominantly of eastern origin, inducted and procured from Original Equipment Manufacturers (OEMs). The Private industry has partnered with the *IN* in indigenisation of sub-assemblies of these vital gun systems. A large number of firms have been associated with the development of various gun systems and sub systems for *IN*. Successful development of these systems has given Navy enough confidence in the Indian Industry and displayed that such complex technologies can be evolved with concerted participation of the various lead stakeholders.

14. There has been requirement of fast moving consumables of gun systems in the past and the requirement is envisaged to grow significantly in the upcoming years with the induction of a large number of ships. The platforms need to be equipped with safe, reliable and ready to combat gun systems.

15. **Indigenisation Envisaged**. The list of equipment for which spare parts/ components could be taken up for indigenisation are as follows: -

- (a) Barrels and Liners for Various Guns.
- (b) Proximity Cut-off Devices for Gun Systems.
- (c) Bore Gauges for Checking Condition of Barrels.
- (d) Various Elastomers for Gun Systems.

(e) Mechanical Components such as Springs, Levers and Screws of Various Gun Systems.

(f) Hydraulic Buffers and Recuperators of Various Gun Systems.

- (g) Proximity fuze for 30 mm and 76mm ammunition.
- (h) Steel cartridge case for 76mm ammunition.
- (j) MOC dispersal mechanism.

Missile Systems

16. The missile systems held in the *IN* inventory and those which are being inducted are procured from Original Equipment Manufacturers (OEMs) or Indian DPSUs. The requirement of missile systems is envisaged to grow significantly in the upcoming years with the induction of a large number of ships, submarines and aircrafts. The missile technology is ever changing and platforms would need to be equipped with state-of-art missiles with better capabilities at all times.

17. *IN* has achieved success in indigenisation of various missile explosives viz. booster powder charges and ignitors, sustainer powder charges and ignitors, various pyros and missile batteries. Though the other missile components are being catered through the OEM, there exists a greater need to indigenise fast moving missile consumables.

18. **Indigenisation Envisaged**. The list of equipment for which spare parts/ components could be taken up for indigenisation are as follows:-

- (a) Homing Heads of Missiles.
- (b) Warheads, Rocket Motors and Exploders.
- (c) Airframes, Control Surfaces and Actuators of Missiles.
- (d) Sealants.
- (e) Enamels and Paints.

- (f) Various Elastomers and Rubber Components.
- (g) Weapon Health Monitoring System.

Electrical/ Electronic Systems

19. The electrical/ electronic systems in NA stores play a very important role be it within the NA store or the test equipment being used. Most of the electrical/ electronic systems held in the *IN* inventory are predominantly procured from Original Equipment Manufacturers (OEMs). The electrical/ electronic systems primarily include:-

- (a) Test Equipment for Missile and Torpedo Preparation.
- (b) Simulators.
- (c) PCBs of Various Missiles Sections and Torpedoes.

20. Optimum self-reliance in these systems is of vital importance for both strategic and economic reasons. There is a requirement to enhance the participation of Private industry in indigenisation of various electronic/ electrical sub-assemblies of NA stores.

21. **Indigenisation Envisaged**. The list of electrical/ electronic systems which could be taken up for indigenisation are as follows:-

- (a) Muzzle Velocity and Discharge Pressure Measuring Device.
- (b) Torpedo Simulators.

(c) Invertors, Converters and Frequency Stabilisers for Torpedoes.

(d) PCBs of Various Missiles and Torpedoes.

(e) Motors, Actuators, Power Amplifiers and Sensors of Torpedoes and Missiles.

(f) Portable and Ship Borne Presetters.

Framework and Organisation

22. DAPI was established at IHQ-MoD(Navy) in Apr 2017. The role and responsibility of indigenisation of NA stores has been entrusted to DAPI since its inception. Subsequently, following Indigenisation Cells (ICs) were created at:-

(a) Controllerate of Naval Armament Inspection(West), Mumbai/ CNAI(W)

(b) Controllerate of Naval Armament Inspection(East), Vishakhapatnam/ CNAI(E)

(c) Controllerate of Naval Armament Inspection(South), Alwaye/ CNAI(S)

(d) Controllerate of Naval Armament (Ordnance Factories), Pune/ CNA(OF)

(e) Controllerate of Naval Armament (Defence Production), Hyderabad/ CNA(DP)

23. In addition, following NAI cells at DRDO labs have been mandated to associate during the R&D activities being undertaken for NA stores:-

- (a) NAI Cell at HEMRL, Pune
- (b) NAI Cell at ARDE, Pune
- (c) NAI Cell at NSTL, Vishakhapatnam

24. Naval Armament Stores being Indigenised under MAKE – II are as follows:-

<u>Ser</u>	Naval Armament Store
(a)	Universal Proximity and DA fuze for 76/62 SRGM with Electronic
	Adaptable to 76-127mm Ammunition
(b)	5" Mobile Target Emulators for C303/S Countermeasure System
(C)	Limpet Mines Mk 414(7kg) and Mk 430(15Kg)

25. Some of the Naval Armament Stores proposed for Indigenisation under various indigenisation routes are as follows:-

Missiles			
(a)	Missile Balwanka		
(b)	Missile Mockup		
(C)	Lightweight Supersonic Target		
<u>Torp</u>	Torpedoes		
(d)	Exploders for Torpedoes		
(e)	Consumables for Torpedo and Decoy		
(f)	Torpedo Simulator		
Ammunition			
(g)	Signal Flares		
(h)	Flare Launchers		
(j)	SSE Ejector		
(k)	Insensitive Energetics		
(I)	Homing System for Underwater Rockets		
Deco	Decoys		
(m)	Passive Off-Board Decoys including Inflatable Decoys		
(n)	Active Off-Board Decoys		
(p)	Ship Launched IR and Smoke Decoys		
(q)	A/c Launched IR Flares and Chaff		
(r)	Anti-Sonar Decoys (Submarines)		
Test and Handling Equipment			
(S)	Torpedo and Missile Loading Gears		
(t)	Decoy Loading Gears		

Indigenisation Through Academia

26. Naval Armament Stores proposed for Indigenisation through Academia are as follows:-

<u>Ser</u>	<u>NA store</u>	<u>Institute</u>
(a)	Advanced Artillery Smart Shell Design –	IIT Kanpur
	SUDARSHAN.	
(b)	Finite Element Analysis of SRGM Barrel	IIT Kanpur
(C)	Design and Development of Polymer/ Composite	IIT Delhi
	Based Driving Band for Gun Ammunition.	

(d)	Identification of Molecules for Making Insensitive	IIT Chennai
	Explosives	

27. <u>Major Stores Still Being Imported</u>. The list of major stores still being imported is as tabulated below:-

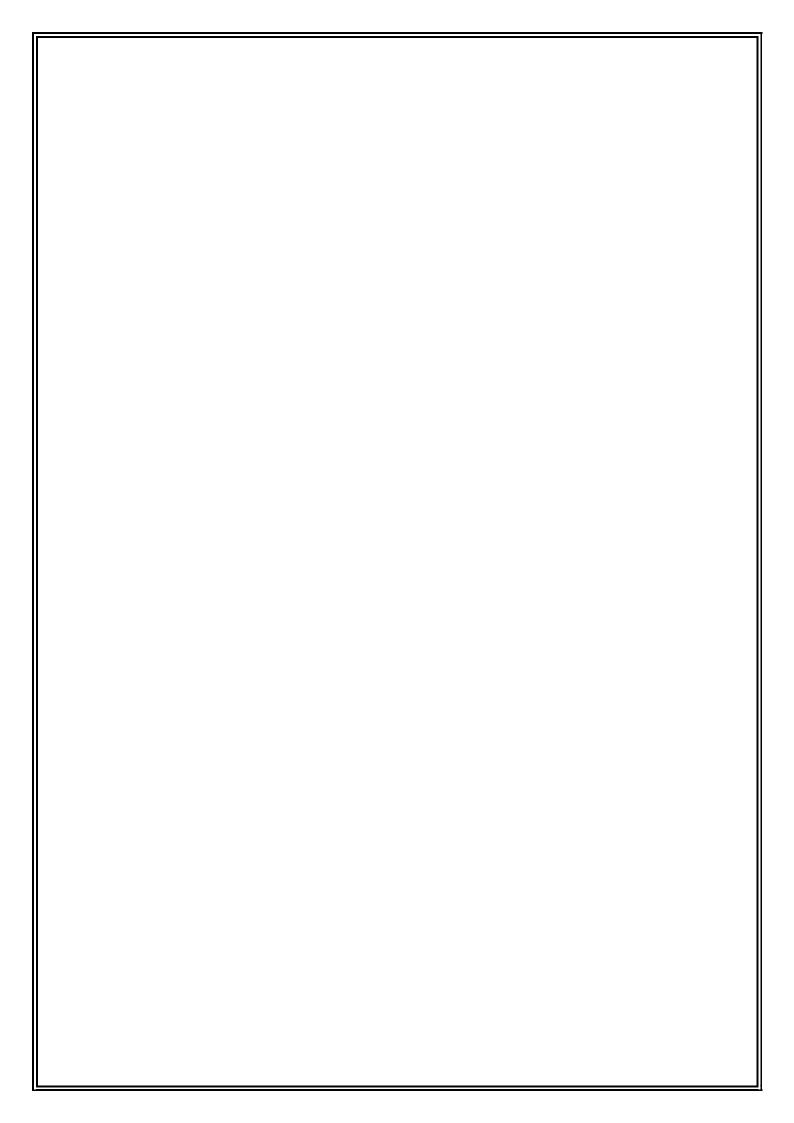
<u>Ser</u>	Naval Armament Store
(a)	Light Weight and Heavy Weight Torpedoes
(b)	Light Weight and Heavy Weight Torpedo Test Equipment
(C)	Torpedo Countermeasure Systems
(d)	Surface to Air Missiles and Surface to Surface Missiles
(e)	Missile Test Equipment
(f)	Small Calibre Ammunition for Negev, Tavor, Galil, Dragonov Rifles
(g)	Proximity and Direct Action Fuzes
(h)	Chaff Payloads
(j)	Flare Countermeasures

28. As in the case of any onboard equipment, the optimum selfreliance of weapon systems is of vital importance for both strategic and economic reasons. In order to synergise and enhance national capabilities in producing state-of-the-art systems or equipment within timelines and cost that are globally competitive, all viable approaches such as formation of consortia, joint ventures and public-private partnerships are necessary.

29. Private industry has been involved in manufacture of various missiles, rockets, torpedoes, mines and launcher for rockets and torpedoes. A number of missile handling equipment have also been manufactured by industry and are being used onboard ships. However, the number of vendors is limited and larger participation would be desirable. Some of the firms viz. M/s L&T, Mahindra Defence, Tata Power Strategic Electronics Division (SED) have ventured in this field and successfully partnered Navy in development of these launchers and handling equipment.

30. The entire industrial might of the country, whether it is the Public Sector Undertakings, Defence Public Sector Units, Large private industries or, Medium, Small and Micro Enterprises (MSMEs), need to partner to achieve the goal of self-reliance of the Indian Navy.

Indigenisation Requirements


31. A list of requirement for indigenisation of stores integral to missiles, torpedoes and other underwater stores, guns, gun ammunition, etc. is placed at **Appendix 'D**'.

32. Through this, it is evident that there are enormous opportunities available for Indian industries in various domains to participate in the Navy's indigenisation plan towards sustaining existing imported armaments and eventually replacing them with Indian armaments.

PAGE LEFT BLANK INTENTIONALLY

PART – IV

NAVAL AVIATION

CHAPTER 8

NAVAL AVIATION EQUIPMENT

1. The indigenisation activities in the Naval Aviation commenced in the year 2005, wherein, thrust and emphasis was laid on achieving 'self-reliance' utilising indigenous resources with an ultimate objective of developing substitutes to ensure limited dependence on foreign suppliers. In recent years, deliberate efforts and emphasis have been made towards indigenisation of aircraft spares, repair processes and test facilities through following levels of sustenance:-

(a) <u>Micro</u>. Obsolescence Management and Import Substitution.

(b) <u>Macro</u>. Reduce dependence on foreign OEM, Enhance Capability.

(c) **<u>Futuristic</u>**. Major indigenisation projects under Buy (Indian-IDDM), Buy and Make (Indian).

2. In order to establish a streamlined procedure towards indigenisation of air stores, a document titled "PINAS" Procedure for Indigenisation of Air Stores" was initially promulgated. Subsequently, Manual for Indigenisation of Air Stores (MINAS) was promulgated in 2009 covering all aspects in the indigenisation process of air stores including DPM-09 provisions. In the year 2017, the Naval Aviation Indigenisation Roadmap comprising the indigenisation requirements of components of aircrafts (Five year requirements, 2017-2022) was published. Subsequently, on culmination of the first 05 years period, a revised Naval Aviation Indigenisation Roadmap for the period 2022-2027 was published on 30 Mar 22. Indigenisation of airborne stores is mainly based on its classification as flight critical / non-flight critical.

(a) **Flight Critical (FC)**. Those items whose malfunction would jeopardize the airworthiness/ safety of the aircraft and/or crew in flight are covered under Flight Critical. Items fitted on engine, flight controls, fuel systems, flight instruments etc. generally belong to this category. The airworthiness certification for the said items is accorded by Centre for Military

Airworthiness and Certification (CEMILAC) through respective Regional Centres for Military Airworthiness (RCMA).

(b) **Non-Flight Critical (NFC)**. These are Non Flight Critical items pertaining to airborne stores, items of Ground Support Equipment, tools, test equipment etc. The airworthiness certification for the said items is accorded by Naval Aeronautical Quality Assurance Services, Kochi (NAQAS).

3. **Partnership with Indian Industry**. The Indian private sector has seen an exponential growth in defence aviation sector with the programmes such as Light Combat Aircraft (LCA) and Advanced Light Helicopter (ALH) and UAVs in the recent past. In addition there is active involvement of private industry in collaboration with DRDO and DPSUs in developing different platforms and systems for the naval aviation. The aerospace, particularly defence aerospace sector is ever growing in both Macro and Micro levels of indigenisation. The various upgrade programmes of naval aircraft and systems are progressed with Indian Industry support. A few examples are IFF, ESM Systems, systems including SATCOM, Network Centric Communication Capabilities etc. At micro level, the focus has been to achieve obsolescence management and import substitution to avoid OEM dependency. In these cases the indigenisation approach has been platform centric, with long term perspective. A few examples are Batteries, Tyres, Brake units, Multi-functional Displays (MFD) etc.

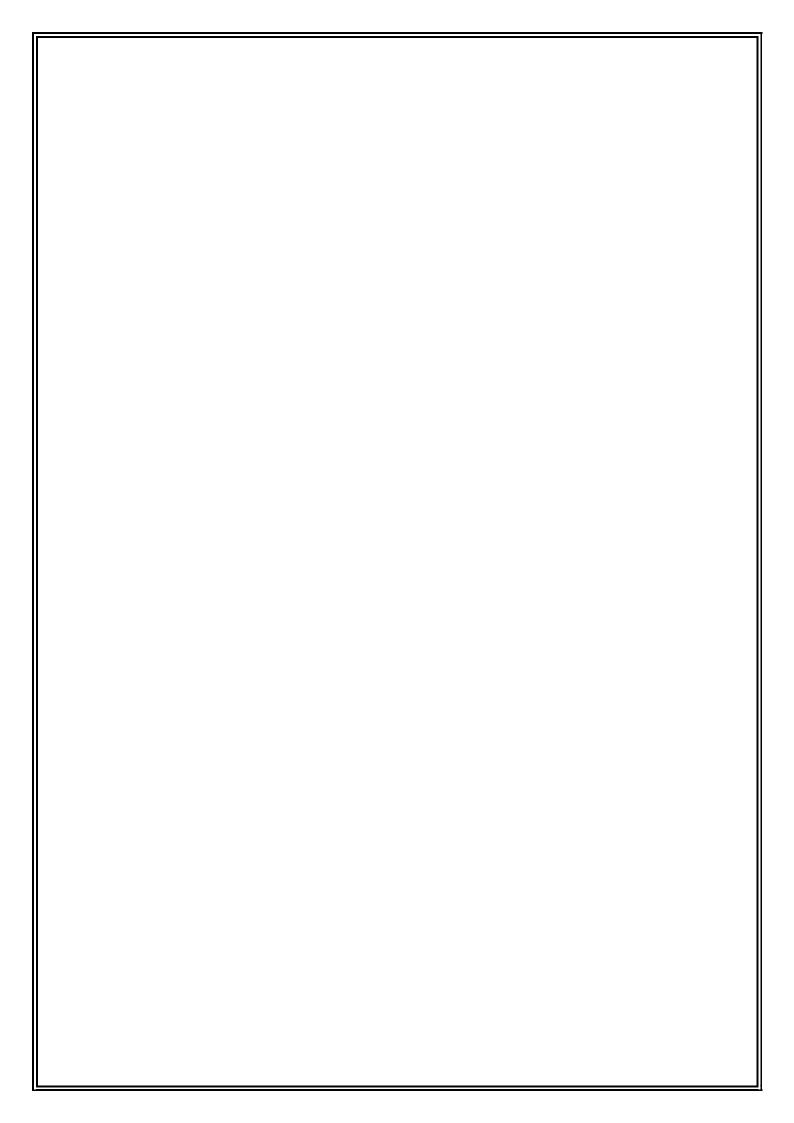
4. <u>**Challenges and Opportunities**</u>. The challenges of small fleet of platforms and associated business volume notwithstanding, a steady progress has been made on indigenisation in naval aviation, with support from DRDO, DPSU, CEMILAC and Indian Private Industry. The challenges and opportunities in this regard are as brought out

(a) **Micro**. Obsolescence management of and sustenance of legacy platforms such as KV 28 ASW helos of Russian origin and western origin platforms such as Seaking ASW helo. The indigenisation efforts have not been restricted to one-to-one replacement of imported items, but are aimed at improving operational efficiency and reliability through re-engineering, ab-initio design and technology enhancement. Approximately 1200

by type spares have been indigenised till date and over 300 are in the pipeline.

(b) <u>Macro</u>. Greater focus is on long term sustenance, increased self-reliance and enhanced capabilities on new generation platforms such as MiG- 29K carrier borne fighter, Hawk AJT, KM 31 ASW helos and P8I LRMR aircraft. In addition to indigenisation of systems and items, setting up in country Deep Repair Facilities (DRF) in partnership with Indian Industry is being actively pursued.

(c) **Futuristic**. Future induction of platforms would be largely based on Strategic Partnership model, Buy (Indian-IDDM), Buy and Make (Indian) concept such as NUH and NMRH helos. Traditional concepts of Deep Repair Facilities (DRF) within services / DPSU would have to be complemented or replaced with capabilities in Indian Production Agency (IPA) through their MRO facilities and Performance Based Logistics (PBL) concepts. Such new concepts present its own challenges and opportunities for Naval Aviation and the Industry.


Indigenisation Requirements

5. List of requirement for indigenisation of naval aviation systems which are envisaged for indigenisation is placed at **Appendix 'E'**.

PAGE LEFT BLANK INTENTIONALLY

PART –V

ELECTRONICS AND ELECTRICAL SYSTEMS

CHAPTER 9

ELECTRICAL/ ELECTRONIC SYSTEMS

1. A large number of electrical/ electronic equipment for *IN* ships have been developed and supplied by the Indian Industry. Products like Microprocessor Based Air Circuit Breakers, Automated Power Management System (APMS), 1MW Generators, Command and Control Systems, Multi-Function Displays, ATM based data bus, Control System for Remote Control Target Boat (RCTB), Rotary and Static Converters/ Inverters etc. have been indigenised by industry and are used onboard *IN* ships.

2. Greater participation of the industry for development and production of the under mentioned Electrical/ Electronic equipment, merits consideration.

Navigational Aid Equipment

3. **<u>Gyros</u>**. Indigenous Ring Laser / Fibre Optic Gyro.

4. **Logs**. Indigenised through M/s Keltron. New technology in Log systems (eg. Doppler Velocity Log etc.) may be explored by the industry.

5. <u>Echo Sounder</u>. Indigenised through M/s Keltron. Indigenisation of Transducer for the Keltron Log is being progressed as import substitution of high value items.

6. **Indigenous ILMEN-GUVK**. Successful development of an indigenous ILMEN-GUVK system (utilised for transfer alignment of Ship borne Gyro parameters to Kamov helicopters) for Talwar & Teg Class ships has been undertaken through the industry and the contract for six systems for Talwar & Teg Class ships has also been concluded. Indigenisation of similar systems installed onboard other platforms is envisaged through private industry.

7. **<u>GPS</u>**. Development of Indigenous Satellite Based Navigation systems with compatibility for GPS/ GLONASS/ IRNSS/ GAGAN, with jamming resistant and anti-spoofing technology.

8. <u>Electronic Chart Displays (ECDIS</u>). ECDIS equipment provides the necessary ability to select, display and interpret relevant information, including the use of navigational functions associated with route planning and monitoring; and knowing what proper action to take in case of malfunction. The equipment is being sourced as Commercial Off the Shelf (COTS) equipment, however the present vendor base is limited and can be expanded with participation of the private industry.

9. **Auto-Plotter**. The function of an auto-plotter is to plot and record the position and track of own ship and be used as Action Information Organisation (AIO) for providing integrated track management for targets using ships sensors for tactical operations. At present the vendor base for the Auto plotter in the *IN* is limited and can be expanded with participation of capable private industry partners.

10. **HVLAS**. VLAS is a visual landing aid system installed onboard *IN* ships for providing visual indications to the pilot of a Helicopter, who is coming onboard a ship for recovery. The present equipment fit in the *IN* is of foreign origin which is being supplied by the firm's Indian rep. Design and development of an indigenous Visual Landing aid system by participation of the industry, is considered essential to achieve self-reliance in the domain.

Communication Equipment

11. **<u>Rukmani</u>**. A case for indigenous development of Rukmani (C and Ku Band) has been initiated by the *IN* for both *Above and Below deck* equipment. AIP for the case has been accorded in Apr 22 and the project is presently at feasibility study stage. Participation of the private industry in the indigenous development of the system is solicited.

12. **SATCOM terminals for Submarines**. A proposal for development of SATCOM terminals (Ku Band) for Submarine application is also being deliberated, as the present equipment fit is supplied by foreign OEMs. Participation of the private industry in the project is recommended as it envisages development of in-board equipment, outboard Antenna head units, and necessary ancillaries.

13. **Communication Sets**. Most of the communication sets in VLF, V/UHF, HF frequency ranges are being sourced through import initially and later being produced/ services through ToT through PSUs like HAL, BEL and ECIL etc. Although these high technology/ capital extensive systems are generally taken up for development through DRDO or other PSUs, Private Industry may partner with these organisation for development of sub-systems and assemblies.

14. **Digital Beam-Forming Based Satellite TV (DB2ST)**. View frequent failure of servo drives of Satellite TV antenna terminal onboard ships at sea, development of 'Digital Beam Forming Based Satellite TV (DB2ST)' is being progressed under Make II category. The technology requirement of DB2ST entails development of an antenna with no movable part and electronic beam steering. The EOI was hosted on MoD website post accord of AoN by SCAPCC on 06 Dec 18. Post receipt of budgetary offers, the Project Sanction Order was issued. However, limited success has been achieved till date. Participation of more firms in the project is recommended for materialising the project.

15. **Integrated Mast (IM)**. The development of UNICORN antenna is being progressed with M/s ATLA, Japan with BEL (Bg) as production partner which aims at integrating V/UHF Communication, EW, IFF, TACAN, Wi-Fi, Link-16, in a single Radome structure. However, the lead time for realisation of UNICORN antenna, customised for IN requirements is likely to be 2-3 years view technological challenges and finalisation of terms and conditions for technology transfer. Therefore, as an interim solution, a parallel project for in-house development of an Indigenous Integrated Mast (IIM) (in limited scope) for IN Ships on fast track basis is being undertaken through BEL(Bg). IN requirements for the proposed IIM envisages integration of ELINT, COMINT, CAW and Data Link antenna on a single mast without Radome. Private industry may propose suitable solutions in the domain, especially development of frequency selectable radome for consideration by IN.

16. <u>Development of Integrated Communication and</u> <u>Surveillance System (ICSS) for Submarines</u>. One of the most crucial aspects of submarine operations is the RCS when the submarine is at periscope depth. With the advancements in technology, there is requirement to minimise the number of masts which are protruding above the sea surface. In order to lower the probability of interception, there is a requirement to downsize and integrate sensor payloads so as to fit them on a single mast. The solution is expected to integrate optical surveillance R-ESM, C-ESM, SATCOM and communication antenna payloads. With integration of these payloads, one mast can integrate surveillance, communication and NCO requirements of an underwater platforms. Once developed and inducted on conventional submarines, these solutions can also be suitably adopted for AUVs/ UUVs which have an inherent restriction of available space.

Advanced Multifunction Antenna Systems (Submarine 17. Application). Existing multifunction antenna systems onboard submarines support VHF, UHF, S-Band, GPS, IFF and AIS functionalities. However, there are separate antenna systems for VLF, HF and Satellite communication. In order to optimise the available space onboard submarines and obviate the requirement of towed wire antennas for VLF communication, advanced multifunction antenna systems can be developed which support communication from VLF to K bands. Once designed and developed, these antenna systems can be configured to meet the requirements of submarines and well as AUVs/ UUVs. The development will require integration of multiple antennae in a pressure proof radome connected to the inboard equipment of the submarine through hybrid pressure tight cables. Further, these multifunction antenna systems can be installed on all classes of present and future submarine platforms in order to achieve standardisation of antenna systems.

18. **Software Defined Radios (SDR)**. Secure and reliable communication is the backbone of any military operation. Great advancements have been made in the field of military communication around the world. The SDRs are not only compact but also provide multiple modes of communication from a single set. It is felt that efforts should be invested in the indigenous fructification of this technology.

Electronic Warfare

19. **Ship and Air Borne EW Systems**. Development of new generation indigenous Electronic Warfare (EW) systems is being steered through DLRL (Hyderabad) under programme 'Samudrika'. The programme was sanctioned on 06 Jul 12 for development of seven types of EW systems (03-Ship Borne and 04 Air Borne) and are at various stages of implementation. As a sequel to the Programme Samudrika, development of next generation Advanced integrated EW and COMINT systems is being targeted for which the industry may also consider to undertake Design and Development efforts in collaboration with DRDO.

20. **TR Modules**. *IN* is progressing a case for development of `T/R module based EW systems, using Active Aperture Electronically Scanned Phased Array' for incorporation in indigenous EW projects. Involvement of Private industry is also solicited in the design and development efforts which is being progressed by DRDO. These modules are envisaged to be a game changer technology in the domain.

21. **Drone Based ELINT System**. As part of the future inductions in the field of EW systems, development of Drone based ELINT system (2-18 GHz) is being undertaken through BEL(Hyd). While system specifications have been finalised and procurement of hardware for the ELINT payload has been completed, there is an enormous scope of R&D in the domain as the present system is targeted in the frequency range of 2-18 GHz only. Participation of the private sector in development of Drone based ELINT systems in the entire spectrum of 0.175 to 40 GHz is envisaged.

22. <u>Modular ESM Receivers</u>. Modular design and BLI technology based ESM receiver for 18-40GHz frequency range is a likely field of interest to the IN as it aims to reduce the size of the antennae and provide the flexibility akin to a plug in module. Further, development of Base Line Interferometry (BLI) based low band antenna for ESM coverage for 175-500 MHz frequency band is also envisaged in the future. Participation of the private industry in development of such modular and technologically advanced systems is recommended.

Power Generation & Distribution (PGD) Equipment

23. **Induction of Lithium Ion Batteries**. Case for Li-Ion batteries for submarine and ship application is being progressed by the *IN*. Further, towards inducting Lithium Ion Batteries for ship borne applications, development in potential application areas such as AELs, LED based lamps and UPS is being progressed. Involvement of private industry in development of Li-Ion batteries for these already identified applications, and future applications (as and when finalised by the *IN*) is deemed to be essential.

24. <u>Vendor Base Expansion</u>. Vendor base expansion in respect of the following systems is being progressed and capable industry partners are requested to engage with *IN* for offering products for trials as per promulgated specifications:-

(a) Automated Power Management System (APMS) and Main Switchboard.

- (b) Alternators.
- (c) Motors.
- (d) Helo Starting Rectifiers.
- (e) LED Luminaries.
- (f) Ruggedised UPS and ATS.

25. **Axial Flux Motors**. Conventional Induction motors used onboard ships are Radial Flux Machines where in the magnetising flux is generated in a direction perpendicular to the shaft axis. Axial Flux Motors generate the magnetising flux in a direction parallel to the shaft axis. This design makes the motor power dense and compact. The technologies required for realisation of these machines, which needs to be taken up by the private industry are as under:-

(a) **<u>Electrical Machine Design</u>**. Design of stator and rotor based on available sources of magnetizing current and core properties.

(b) **<u>Permanent Magnet Material</u>**. Use of permanent magnets would yield the performance results from Axial Flux machines.

(c) **<u>Power Conversion Electronics</u>**. The motor control (speed and torque) will be achieved using voltage and current control by a power electronic converter.

26. **Inertial Energy Storage System**. Inertial Energy Storage System (IESS) is an ancient technology. However with the advancements in power electronics this technology is being increasingly used as a replacement of batteries for energy storage devices. IESS comprises a high speed dual feed electrical machine coupled with a flywheel. IESS can be utilised for high power transitional power supply applications for safety critical equipment like Steering Gear Motors. The technologies required for realization of these systems, which needs to be taken up by the private industry are as under:-

(a) <u>Electrical Machine Design</u>. Design of a suitable electrical machine with very high speed of rotation (1,00,000 RPM).

(b) <u>Material Science</u>. Use of carbon fiber reinforced materials which can withstand the centrifugal forces at high RPM.

(c) <u>Magnetic Bearings</u>. The high speed rotating assembly is required to be suspended using magnetic bearings in a vacuum chamber to nullify the effect of drag and maximum utilization of Flywheel energy.

Sensors/ C3 Equipment and their Integration

27. **Navigational Radars**. These radars are generally extremely low power CW radars with complex signal processing and capable of detecting targets without being picked up by EW systems. These are being supplied as COTS items by multiple Indian vendors.

28. <u>Air Surveillance Radars</u>. Early Warning radars have traditionally been sourced from M/s Bharat Electronics in the past. Even though these radars include some foreign content, the maximum constituents of these are sourced by the DPSU from indigenous vendors and MSME. Further, the private sector is also participating in the development of radars with M/s TASL supplying the 3D ASR for the new construction platforms. As part of the future requirements, development of an indigenous 3D-AMDR is being progressed by DRDO. Involvement of the private sector is also likely to be undertaken with suitable indigenous substitutes in the future.

Command Control & Communication System. Command, 29. Control and Communication (C3) system is an information system which incorporates strategic and tactical systems viz. combat direction system, tactical data system, or warning and control system with associated human function. The increasing need for responsive Command & Control systems is being driven by the rapidity with which weapons can be deployed. In a complex multi-threat combat environment, automated combat direction systems make it possible for people to deal with a large number of targets and compressed reaction times of modern warfare. The complex C3 functions required to keep track of hundreds of friendly, neutral, and enemy ships, aircraft, and weapons, would be impossible by manual methods. Some of the Indian vendors assessed by Navy having capacity and capability as prospective developers include M/s TPCL, Tata Advanced Systems, M/s BEL, TCS etc. C3 systems are required to be developed to incorporate following areas in support of commanders engaged in command and control:-

- (a) Reconnaissance and Surveillance
- (b) Environmental Observation and Forecasting
- (c) Intelligence Analysis
- (d) Electronic warfare
- (e) Navigation

(f) Strategic and Tactical Weapons Deployment

30. **C2 System with Integrated Data Link**. *IN* is conceptualising development of a C2 system comprising CMS, SDN and Data link. The technology required for the same is the principal man-machine interface for realisation of combat capability in a networked environment. It should have latest processing capabilities and hardware adaptable as per *IN* requirements for fitment on Naval platforms. The system is also envisaged to be integrated with SDN and a data link for networking with other platforms.

31. <u>**High Speed Data Link**</u>. The indigenous Data Link system has been developed using combination of in-house expertise (WESEE) and M/s BEL. The system has been inducted onboard ships.

32. In order to address the long term supportability issues of Ships procured from foreign countries, replacement of complete equipment/ components/ modules of certain non-technology intensive general purpose equipment could be considered by Indian Industry.

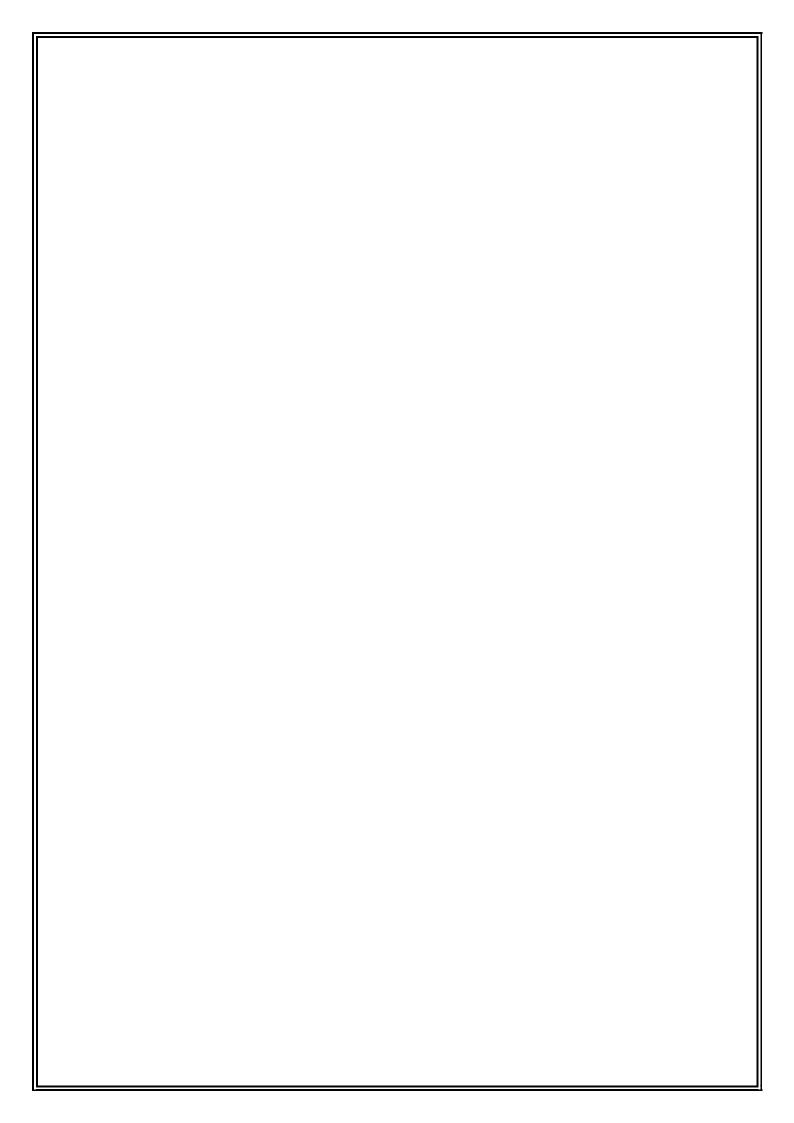
Indigenisation Requirements

33. The list of requirement for indigenisation of Electrical/ Electronic equipment and systems anticipated for fitment onboard is placed at **Appendix 'F'**.

CHAPTER 10

PROJECTS COMPLETED/ PROPOSED WITH DRDO/ PRIVATE INDUSTRY

1. *IN* is in the process of developing certain technology intensive projects through DRDO, towards which synergy meetings/ interactions with DRDO clusters are held periodically. The aim is to achieve the desired outcomes in a time bound manner with active participation of all stakeholders. Some equipment have also been identified for development through Private Industry under 'Make' category of Chapter III of DAP – 2020.


2. Proposals for projects envisaged to be taken up under 'MAKE' category, Projects under Innovations for Defence Excellence (iDEX) scheme, Technology Development Fund (TDF) scheme and miscellaneous products to be taken up for development are placed at **Appendices 'G', 'H', 'J' & 'K'** respectively.

3. Similarly, a number of equipment for new construction ships have been developed through DRDO/ Pvt. Industry. These indigenous equipment are being installed onboard all new construction ships, indigenously constructed Indigenous Aircraft Carrier (IAC)/ Anti Submarine Warfare (ASW) Corvettes and other ships. List of these equipment is placed at **Appendix 'L'**.

4. Notwithstanding, any private industry/MSME/Startup interested in any of these projects may approach *IN* through the POC listed at the appendices to discuss their proposal and take it forward, keeping the co-ordinating directorate informed. The list of co-ordinating directorates is placed at **Appendix 'N'**.

PART – VI

FUTURE TECHNOLOGIES

CHAPTER 11

FUTURE TECHNOLOGIES

Rapid and profound technological change is one of the most 1. potent factors shaping the modern world. It creates significant opportunities, but drives increasingly complex, ambiguous and destabilising global threats, and catalyses profound societal, economic and political shifts. Technology is a strategic force; the nations that are best able to anticipate and exploit technological opportunities may have a decisive edge in future conflicts. In a resource constrained environment and given the breadth and relentless pace of technological change, focusing of effort is essential. The *IN* needs access to the right capability base (people, knowledge, facilities, industrial capacity etc.) to understand and develop technologies that offer the most promising cross-cutting applications so that it can exploit these technologies at a speed of relevance for transformative real-world impact.

2. Future wars will be characterized by deployment of unmanned weapon systems, robotic soldiers and sophisticated machines which can operate in all environments. Space, cyber space and asymmetric dimensions are likely to assume greater importance. Advancement in critical technologies, sensors, robotics, communication and electronics are shaping the future battle space. The technologies that would have defence related applications are:-

- (a) Advanced Electronics and Computation.
- (b) Sensors (Photonics, Laser, MEMS).
- (c) Advanced Weapons.
- (d) C⁴ISR and Network Centric Operations.
- (e) Advanced Propulsion, Energy Storage and Power Systems.
- (f) Warship Design.
- (g) Stealth.

63

- (h) Advanced Materials.
- (j) Autonomous Systems and Robotics.
- (k) Artificial Intelligence.
- (I) Software Defined Radio.
- (m) Remotely Deployable Command and Control System.

3. Fundamental technology developments will largely take place outside the government sector, and effective defence modernisation must be a partnership with DRDO, industry and academia. *IN* intends to engage with them in pursuit of better and quicker capability outcomes. The technologies outlined in the succeeding paragraphs would be the backbone of future *IN*.

Advanced Electronics and Computation

4. Advanced electronics and computing are concerned with information processing, systems that are programmable, and the technologies that support them. It includes silicon-based digital information processing technologies like traditional microprocessors; specialist chips such as Graphical Processing Units (GPUs); Field Programmable Gate Arrays (FPGAs); Application Specific Integrated Circuits (ASICs); and system-on-chip computing boards. It includes supporting elements like memory and associated software development environments. It also includes emerging information technologies like neuromorphic processors, and non-silicon-based quantum and DNA computing.

5. Rather than supporting a range of specific defence applications, advanced electronics and computing are of critical importance to defence as a foundational technology supporting other systems. Almost all platforms, systems and services contain a programmable element, and in many cases, this is critical to delivering the capability. Examples include the targeting systems for weapons, the processing of sensor data, and the flight control systems for aircraft. In addition, since programming is comparatively easy to change, this technology family contributes towards the agility necessary to counter today's rapidly-changing threats.

High-performance and fast computation capabilities have 6. already emerged as essential ingredients for almost every conceivable application viz. management, networking, decision makina, equipment performance enhancement, design and training & simulation studies. Advances in related technologies are continuously driving towards more and more miniaturization, increase computational speed and power, and lowering of costs, a trend that will continue at a rapid pace during the current century. Powerful and smaller computers will enable development of more compact and powerful weapons, sensors, and crucial systems.

7. Automated systems have already found their way on board naval platforms for management of machinery, power and battle damage assessment systems. Automated systems hold tremendous potential for providing highly reliable performance to naval platforms, with reduced manning requirements, reduced platform size without compromising on capabilities, increasing surveillance, intelligence gathering and warfare conducting capabilities and minimising exposure of personnel to hostile actions.

8. The advancements in computation and sensor technologies, together with the advancements in Micro Electronic Mechanical Systems (MEMS) and nano-technologies, the next 20 years will witness an increased availability of sophisticated automated systems for a wide range of naval applications. Thus, computers, microprocessors, and related software that provide computation and automation capabilities are among the most important technologies that will impact the entire spectrum of technologies related to the Navy, and thus will strongly influence the future performance of the Armed Forces.

9. **Technology Trends**. The impact of computation in future naval operations is expected to be enormous. Combined with advanced distributed sensors, computation will be the primary enabler for achieving and exploiting complete situational awareness and will provide more and more computational power to the processing and interpretation of the digitised sensor signals. Sensing elements will become fully integrated with their supporting digital computer hardware to produce smart sensors or sensors-on-a-chip. More systems will become adaptive, processing in real-time the observed

signature and altering their system parameters in response to the observations to optimise their actual performance. Fusion of data from multiple sources, extraction of meaningful information contained therein, real-time control, and high accuracy will result in considerable optimisation in the effectiveness of future naval operations.

Integrated Platform Management Systems. A possible 10. example of Automation Technology would be the Integrated Platform Management Systems (IPMS). New construction ships are already being fitted with IPMS for control and monitoring of platform-wise machinery and systems including propulsion, power generation and distribution, auxiliaries, damage control, steering and stabilisation. At present, group of 'dumb' sensors are connected to the processors with intelligence residing primarily in the central processor. With the significant increase in processing power and memory and reduction in the price, embedded processors will penetrate virtually every I/O point and thereby make each of them an 'intelligent appliance'. For example, an intelligent motor should be able to provide more information such as its history, part number, specifications, operating instructions, diagnostics, repair instructions, replacement alternatives, alarm messaging, pre-failure warnings, etc. Presently, this information resides in the documents or with the experts. A significant intelligent characteristic is diagnostic, not only after the failure has occurred, but also predictive (before the failure) and advisory (providing maintenance instructions). This kind of 'intelligence' will reside not only in the central processor but will be embedded in the equipment itself.

Sensor Technologies

11. A sensor detects a physical phenomenon such as an electrical field, vibration or particle, and generates a response, such as the transmission of digital information or a change in colour to represent a detected chemical. Data from sensors, appropriately stored and analysed, builds our understanding of the operating environment, identifies items within it, and combines to provide situational awareness. Sensing therefore informs decisions at all levels.

12. Sensing technologies are diverse and include: electromagnetic sensing (e.g. electro-optic, infra-red, radar and electronic

surveillance); gravity sensing; acoustic sensing; Position Navigation and Timing (PTN); Chemical, Biological, Radiological and Nuclear (CBRN); explosive sensing; quantum sensing; and sensor fusion. Sensors are deployed on a range of platforms operating in a variety of environments – and need to overcome congestion and clutter, detect difficult (including fast or stealthy) targets, continue to function despite adversary jamming attempts and counter-surveillance techniques, and conform to stringent size and weight requirements.

13. Developments in technology related to semi-conductors, super conductors, computers, signal processing algorithms are resulting in the increasing availability of high performance sensors with improved range, resolution and fidelity. While considerable indigenous R&D efforts are already in progress in various areas, these need to be pursued in a more focused manner for overcoming existing technology gaps. Considerable commonality of technologies exist in various types of sensors and therefore R&D efforts in various associated technology areas could be shared among different projects.

14. **Electromagnetic Sensors**. These include the complete range of Radars, ESM/ECM, IR and Laser systems. Dedicated DRDO labs are already undertaking R&D activities in these areas and considerable success has been achieved in specific areas. Important areas for sustained indigenous R&D effort are broadly outlined in the succeeding paragraphs.

15. **Radars**. With their all-weather and long-range capabilities for detection and tracking, radars will remain the primary electromagnetic sensors for Naval platforms. A revolution is already taking place in radar technology with the availability of high power solid-state electronics replacing conventional Traveling Wave Tubes (TWT), replacement of rotating radar dishes with steerable solid state arrays (providing increased reliability and scanning speeds), faster processing and digitisation for returning radar signals, smarter algorithms for improving signal processing, reducing clutter and false alarms, Track While Scan (TWS) capabilities, capability to track much larger number of targets simultaneously, identifying targets and providing motion analysis.

16. Future radars will utilise solid-state phased arrays antennae for almost all frequency bands, with increasing use of active multifunction radar systems. Signal processing will be almost entirely digital beam forming, confining the analog microwave portions to the extreme front-end interface of the antenna with the outside world. Signals received at the antenna elements will be digitised at the element after minimal analog processing and passed on in digital form over wideband fibre-optic links to convenient remote locations for further signal processing, doing away with the requirement of waveguides. Similarly, during transmission, digitally created waveforms will be generated and distributed via fibre-optics to individual antenna elements where Digital to Analog (D/A) conversion and Monolithic Microwave Integrated Circuit (MMIC) based power amplification will take place.

17. Major application areas that need to be pursued through inhouse R&D efforts include the following:-

- (a) Development of Multifunction Phased Array Radars.
- (b) Development of Synthetic Aperture Radars (SARs).
- (c) Development of Low Probability of Intercept (LPI) Radars.
- (d) Development of Millimetre Wave Radars (MWR).

18. <u>Active Sonar</u>. Submarines are increasingly becoming stealthier, limiting the traditional advantage of passive narrow-band processing. The trend of utilising active sonar operation, especially in the context of littoral warfare using multi-static operation with transmission from a platform or buoy exploited by all other sonar systems in vicinity, will gain tactical usage. Development of active sonar systems with multi-static capability, efficient receiver designs to overcome reverberation and low frequency transducers will therefore continue to receive more and more attention.

19. **Low Frequency Active Sonars**. Lower frequency could result in increased ranges due to low propagation losses. However, this is also handicapped by increased ambient noise and size of arrays. In near future, the frequency of active Hull Mounted Sonar would reduce even further. The advantages of any further reduction in transmission frequency, especially in the coastal tropical water would have to be weighed, before undertaking development of very low frequency sonar systems which will lead to bulkier arrays and significant increase in costs.

20. **Passive Sonars**. Passive sonar operation is an attractive option in deeper waters with low frequency of operation. The submarine sonars would essentially remain passive systems with flank and towed arrays to enable operation below 300 Hz. Efficient array systems with Left / Right ambiguity resolution, advanced classifiers and passive Target Motion Analysis would have to be developed.

21. <u>Mine & Obstacle Avoidance Sonar</u>. Mine hunting and obstacle avoidance sonar would necessarily need to use high frequencies for better target resolution and acoustic image processing for target classification. Improvement of ranges at higher frequencies will be a major challenge. This is a vital area where indigenous development has not made any significant progress. Demand of higher spatial and range resolution would require development of synthetic aperture sonars. Offline data-base management system would be another important dimension of mine sweeping requiring significant impetus.

22. <u>Air Borne Sonars</u>. Dunking sonars which employ low frequency active operation (1.5 - 3 KHz) would continue to perform the key role in underwater surveillance systems. The use of dunking sonar in multi-static active operation would require networking with ship-borne systems. Sonobuoys will provide cost-effective surveillance tools with development of Vertical Line Array DIFAR Buoy (VLAD), Directional Frequency Analysis and Recording (DIFAR), Command Activated Active Sonobuoys (CAAS), apart from passive buoys with LOFAR & DEMON processing available at present. The sonobuoy technology will have significant use in the field of harbour defence networks also.

23. **Non Acoustic Sensor System**. Alternate methods of underwater detection using Magnetic Anomaly Detection (MAD), satellite images and lasers will compliment acoustic detection. MAD will provide confirmation on detection of targets by acoustic means.

Satellite imagery, both optical and from Synthetic Aperture Radar (SAR) will provide advance and panoramic detection capability.

<u>Weapons</u>

24. Emerging threats and increasingly complex and congested environments present a new threat and there is a need to improve existing weapons, further enhancing precision in addition to new capabilities which deliver non-conventional effects.

25. Conventional weapons such as bombs and missiles are designed to cause kinetic damage to a target – physically destroying it or degrading it. Although kinetic damage is an appropriate response to some threats, modern threats and scenarios may require non-kinetic engagement. The presence of civilians or civilian infrastructure may preclude the use of current conventional weapons. As such, enhanced precision guidance and 'smart' munitions are the need of the hour, the latter being able to distinguish its target from its surroundings and providing directional lethality. Other targets may not be suitable for conventional engagement due to their dispersed nature, imprecise or hidden location information, or resilience to conventional attack. In this situation, alternative weapons including offensive cyber and nonlethal weapons provide additional options for the commander and may allow the target to be engaged. In addition, next-generation weapons can deliver scalable or temporary effects, in situations where military action is required but lethal force is not desirable. Hypersonic and high-speed weapons could provide a rapid response to emerging threats and time-sensitive targets.

26. There are a range of technologies that could be weaponised, including Radio Frequency and Laser Directed Energy Weapons (DEW), and offensive cyber. Radio Frequency-DEW allows the engagement of targets containing electronics-rich systems or subsystems, potentially including mobile threats, targets within infrastructure, hostile sensors, and command and control. Laser-DEWs can counter a broad target set from improvised unmanned aerial vehicles to complex missiles. Offensive cyber weapons can deny or even destroy adversaries' capabilities affecting their ability to understand the world. Even when not used, these effects can act as a deterrent.

27. Next generation guidance and navigation systems utilising miniaturised multimodal sensors and advanced algorithms will enable precise delivery of effects onto a target in a GPS denied environment. Exploiting technologies and manufacturing processes from the commercial sector enables a range of new opportunities for defence. This is being demonstrated in DEW systems which are developed from RF and laser technologies first used in the civil market.

28. Highly potent air-defence systems, anti-ship weapons, mines, torpedoes, and soft-kill weapons are becoming available to our potential adversaries including non-state actors at a low cost. The offensive and defensive capabilities on Naval platforms will, therefore, need to be suitably configured with hard-kill and soft-kill weapons operating in networked environment with Co-operative Engagement Capabilities (CEC).

29. Indigenous R&D effort, therefore, needs to be directed towards development of suitable missiles, guns and soft-kill weapons for AMD, precision longer range missiles for offensive action against ship and land targets, guns with suitable ranges for providing Naval gun fire support and anti-ship and anti-submarine torpedoes.

30. **Anti-Ship Missile Defence**. Technological advances will result in the development of highly manoeuvrable, stealthy, sub-sonic, and / or supersonic anti-ship ballistic and cruise missiles which the potential adversaries could be expected to possess. Many of them will be sea skimmers that would provide very little reaction times for employing effective defensive measures. Further, these missiles will be delivered from platforms at beyond the visual and stand-off ranges. Credible missile defence capabilities need to comprise 'quick-reaction high-performance Surface-to-Air Missile (SAM) systems', 'high rate of fire Close-in Weapon System (CIWS) guns' and in future, the 'Directed Energy Weapons (DEW)'.

31. **SAM Systems**. SAM systems will continue to be the back bone of Anti-Missile Defence (AMD) systems. However, their capabilities and effectiveness would need to be significantly enhanced for providing credible AMD. Development / acquisition of SAM systems, with longer range, detection and CEC, are therefore essential to

enhance the standoff ranges and serve as deterrence to the launch platforms.

32. **<u>CIWS Guns</u>**. CIWS guns will continue to remain the last means of defence within the inner boundary of kill zone of SAM systems. The AK-630 gun has been standardised as the CIWS gun for the Navy. However, with threats becoming increasingly stealthy, manoeuvrable, and supersonic, their performance improvements will need to be pursued. These include increasing the firing rate and developing improved ammunition such as Advanced Hit Efficiency and Destruction (AHEAD) ammunition.

33. **Attack and Fire Support Missions**. In order to prosecute threats and provide Naval Gun Fire Support (NGFS), precision antiship missiles, land-attack missiles and large caliber guns with appropriate ammunition need to be developed / procured. Suitable small calibre guns are also required for engaging small craft, boats, etc., when operating in the littoral environment or engaging non-state actors in policing / low intensity conflict roles. Anti-Ship and Land-Attack Missiles should be capable of being launched from ships, submarines and aircraft.

34. <u>Attack Missiles</u>. Due to their longer ranges and inherent accuracies, cruise and sea-skimming missiles launched from ships, submarines and aircraft will remain the most effective and potent means for engaging enemy warships and land targets. However, as the surveillance, ECM and AMD capabilities of our potential adversaries are expected to improve, they will need to be countered by longer range, stealthier, faster and smarter missiles with enhanced ECCM facilities.

35. The cost of guidance subsystem generally dominates the weapon cost. Typically, guidance electronics may be half of the total cost of the weapon. Therefore, the reduction of the cost of guidance electronics is of utmost importance. Infra-Red (IR) and video seekers, one-way (command) data links, GPS, and new Inertial Measurement Unit (IMU) weapon navigation systems tend to be low-cost components. Two-way, high-data-rate links and long-range radar seekers are examples of high-cost components of a guidance system. System designs that utilise lower-cost components, standardised

across weapons using similar components can significantly contribute in lowering the costs and hence need to be pursued.

36. **<u>Guns</u>**. Extending the barrel and recoil of conventional guns could enhance the range by a few kilometres. Conventional guns, however, have inherent limitations in the velocity of projectile and the range that can be achieved. The limits of gas expansion prohibit the launching of unassisted projectiles to velocities greater than 1.5 km per sec and, therefore, the ranges that can be achieved are limited.

37. Considerable research is already in progress in developed countries for the development of Extended Range Guided Munition (ERGM) projectiles for larger calibre (127 mm, 155 mm and even larger) guns. The ERGM projectile with ranges up to 70 miles, with inbuilt GPS and INS, are expected to be available within the next decade. 155 mm shells with additional rocket motor drive and in-built intelligence are also under development and are expected to provide maximum ranges of up to 200 miles. Similarly, shells with Course Correction Fuzes(CCF) provide accurate targeting and could be used in NGFS role. This will significantly enhance shore bombardment and NGFS capabilities of warships and need to be indigenously developed.

Kinetic Energy Weapons. Land-attack missiles are obviously 38. not a cost-effective option for applications where a large amount of fire power is required. An affordable extension of the gun-ranges, therefore, requires an unconventional approach. It is in this context that the development of Kinetic Energy Weapons such as the Electromagnetic (EM) rail gun assumes importance. Experiments have demonstrated that the projectiles could be accelerated to achieve speeds up to 2.5 km per second. It is projected that hypersonic velocities of up to 6 km per second could be achieved. The EM rail guns can deliver the capabilities of hypersonic missiles at gun-like costs and has the potential to meet every Naval Fire Support requirement. The kinetic energy weapons provide considerable advantages in terms of high projectile velocity, lethality, safety, enhanced ammunition carrying capacity, and enhanced ranges. As related technologies mature, they are also expected to become costeffective. Development of pulsed power sources is a critical bottleneck in the realisation of EM rail gun. In the interim, Electro-ThermalChemical guns which require considerably lesser amount of pulse energy could be attempted to enhance the range of existing guns.

39. Directed Energy Weapons (DEWs). Technology developments in future generation anti-ship missiles will make them increasingly difficult threats for countering with the conventional SAM systems. Hence, the role of Directed Energy Weapons (DEWs), which operate at the speed of light, assume increasing importance. They use a beam of concentrated electromagnetic energy or atomic or subatomic particles primarily as a direct means to damage or destroy the intended target. With progressive miniaturisation of electronics, MEMS technologies, availability of high-power components, increased computation power, DEWs can provide tremendous potential for undertaking both offensive and defensive operations. As an example, compact DEWs mounted on aircraft or remote vehicles can be used to severely degrade an adversary's electronics, surveillance, command, control, and communication capabilities. Indigenous DEW programme for the development of such weapons, therefore, needs to be accorded high priority. The technology areas, which need attention, broadly include the following:-

(a) **Laser Weapons**. They use a laser beam of concentrated energy to directly damage or destroy the intended target. In the next 5-10 years, laser weapons are expected to be deployed on Naval surface ships as Close-in-Weapon Systems, and provide effective defence against anti-ship missiles. High-energy lasers are already under advanced stages of development in the USA, China, Russia and Israel.

(b) <u>**High-Power Microwave (HPM) Weapons</u>**. Unlike the directed energy laser weapons, which aim to physically destroy the target, the HPM weapons use the high-power electromagnetic energy to disrupt the performance of sensitive electronics in computer, communication, and electronic systems.</u>

40. <u>Underwater Weapons</u>. Torpedoes, rockets, and mines are commonly used Underwater Weapons. However, the basic limitation of the torpedo is its speed which makes it liable to detection, tracking, and destruction. Higher speed torpedoes, therefore, need to be

developed. Further, the range of ship/air /submarine-launched torpedoes also needs to be increased. Development of the light-weight/ portable mines that can be launched from air, and ASW rockets will also need to be progressed to counter underwater threats.

<u>Command, Control, Communication, Computers,</u> <u>Intelligence, Surveillance, Reconnaissance and Network</u> <u>Centric Operations - C⁴ISR and NCO</u>

41. Effective Command and Control is an essential ingredient for conduct of Naval operations, both in peace and in war. With improvements in surveillance capabilities, communications, weapon application and networking technologies, timely availability of all relevant information for conduct of Naval operations is no longer a constraint. Emerging Command and Control systems will be valuable assets for managing the entire battle space with emphasis shifting from platform centric operations to network centric operations. Cooperative engagement capabilities will seek to exploit the range advantage provided by modern weapons and networked sensors, which may be decoupled from the weapons platform. 'Network Centric Operations' is emerging as a tremendous force multiplier, which will enable availability of all relevant information in near real-time to decision makers permitting substantial compression of time lines for decision making.

42. **Command & Control Systems**. The architecture of new generation Command and Control Systems will need to be modular and scalable with adequate built-in redundancies. They will need to be integrated with a host of equipment with varying interface protocols. The architecture shall support 'plug and play' features for ease of integration. The software will need to include expert algorithms with AI and auto-learning features to support fast decision making, and meeting the requirements of changing scenarios. Most importantly, the application software should provide for network centric operations and subsequently upgradable to incorporate Cooperative Engagement Capability as we transit from platform-centric to network-centric operations.

43. <u>Remotely Deployable Command and Control System</u> (RDCCS). A robust and secure Command and Control system is paramount for a successful Special Operation. Ability to relay and receive time information between the deployed teams and Command post greatly enhance effective decision making. This would require development of high speed modems and a reliable high bandwidth communication backbone.

44. **<u>Communication</u>**. The IN's aspirations to become a truly blue-water Navy in next few years will become a reality only if Naval commanders at sea are able to synchronize and integrate high-tempo operations anywhere in the world. This in essence would require global end-to-end information exchange among the units as a critical mission capability and would serve as a force multiplier for worldwide readiness, mobility, responsiveness, and operations. This information exchange would need to be provided by a network of efficient communication systems.

45. The most important requirement of Naval communications is ship-to-shore and extended-range (beyond line of sight) ship-to-ship communications. The extended ranges and extended durations of ship deployments create unique challenges and complexities. These need to be met, in general, by satellite communications (SATCOM) resources. Communication systems will need to support voice, data and video exchanges, with capabilities such as video conferencing. High demands will be placed on capabilities of the communication network. Network centric operations and cooperative engagement would require tremendous bandwidths, which cannot be met by conventional communication systems. This trend is certain to continue and supplying a dedicated channel to each communication task will become increasingly untenable.

46. **Technology Status and Trends**. Advances in C4ISR have been driven by the tremendous improvements in the field of communication technology, primarily driven by the commercial sector. Communications technology encompasses transmission, networks, applications development, and terminal/ application equipment. Communication transmission technology has already progressed from wire line to all digital and optical fibre or digital microwave. Networks are now electronically switched and have progressed from circuit-switched hierarchical configurations for telephony and data to packet-oriented data networks. Communications applications and related

termination equipment now form a virtual continuum, expanding from traditional messaging and telephony to data, imagery, and live video. Progress in encoding methods for data compression continues, and asymmetrical approaches are being made in many applications, wherein brief queries to databases, for example, elicit voluminous responses of graphic or other data. Developments in the following areas of communication are required to be pursued:-

(a) **SATCOM PCS**. 100% indigenised SATCOM Personal Communication System (PCS) for global service for hand held telephone with capability to exchange voice, video and high speed data links worldwide need to be realised which will require a constellation of satellites and would be developed/ launched by coordinated efforts of ISRO, Defence Space Agency.

(b) **Security Overlay and Interoperability**. As part of development of Joint Services Interoperable Waveforms for triservice interoperability, DRDO has been nominated as the development agency for the waveforms which will be ported over SDRs.

(c) <u>Electronic Warfare</u>. The design and development model has augured well for IN and has resulted in strengthening of the development of EW system and support infrastructure in the country. Since sufficient expertise remains with the developmental agency DLRL and production partner BEL(Hyd), most capable EW system available worldwide. An Advanced Integrated EW system incorporating future technologies need to be progressed to meet the current and future challenges.

47. **Intelligence, Surveillance and Reconnaissance**. Intelligence must be able to provide timely, usable, detailed intelligence to allow Naval forces including Special Forces teams to out-think and out-manoeuvre enemy forces. However, the information gathered is also required to be disseminated to the relevant units at sea in near-real time and in a format, which could be readily utilised for effective decision-making. We need to develop means to download the extremely large amount of data / information collected in real-time and disseminated to the relevant units. This would require high

speed modems and reliable, high-bandwidth communication backbone.

48. **Network Centric Warfare**. A C4ISR system is in effect a network of systems at platform level with linkages to the outer world through tactical data links. The technology now exists to integrate all such platforms by a high speed, high bandwidth network so that the firepower of all netted units can be effectively utilised. Network Centric Warfare or Operations is already a reality and needs to be pursued. Towards this, the important technologies that need to be developed include tactical data links, networking and development of higher capacity algorithms for Command & Control systems that would facilitate in decision support.

Co-operative Engagement Capability (CEC). The key to 49. CEC is to evolve a Common Operating Picture (COP) and make it available across the units. The concept of CEC is particularly relevant during a theatre-level operation or during a joint operation like amphibious operation and involves sharing of resources between the ships of a Task Force and other arms of the Forces. It allows all available information from all the sensors such as radars, sonars, EW equipment and the weapons systems to be used against an adversary. CEC comprises hardware and software that enables real-time distribution and fusion of weapons and sensor data so that individual units can also act as a unified force. This implies that all the CEC equipped units would utilize identical algorithms to create a tactical display. The main advantage would be greater reaction time for forces as there would be an early detection of targets. However, robust communication systems with high bandwidths, resistant to electronic countermeasures with a highly accurate positioning system would be the prime requirement of CEC.

50. **<u>Common Information Grid</u>**. Since the C4 aspect of the NCO would enable all the relevant units to obtain a common picture of the battle space, the units would be operating on a common information grid. The common information grid would provide the decision makers with information, planning and analysis tools to make appropriate and timely decision.

51. **Weapon Grid**. The weapon grid can enable increase of the combat power by exploiting high levels of awareness through utilization of high-speed automated weapon-target pairing algorithms. These algorithms can rapidly determine near-optimal weapon-target pairings after taking into account the threat and resources available e.g. number of remaining targets, remaining rounds, and the probability of kill of remaining rounds.

52. **Interoperability**. In order to harness the advantages of network centric operations and cooperative engagement capability, it is essential that the command & control systems, tactical data links, associated communication systems, algorithms used for data fusion and data presentation are standardised or at least be interoperable. Though feasible, this is a major challenge, as it requires that the current systems are downward compatible with existing (legacy) systems and will be upward compatible with future inductions. It is essential that the requirement of interoperability is adequately addressed at the time of new inductions.

53. **Network Security**. Protection of C4ISR systems/ NCO systems against deliberate or inadvertent, unauthorised acquisition, disclosure, manipulation, loss or modification of sensitive information will have to be ensured. Development of secure firewalls and guards that need to be continuously upgraded to match the dynamic threat scenario will need to be undertaken. Capabilities such as automatic network intrusion detection and response will also need to be developed. The data encryption techniques like key distribution and management by public crypto system or by private crypto systems also assumes significance. The field of normal security techniques like frequency hopping and spread-spectrum still needs to be realised to their full potential. Further, in case of local breach of network security, there should be a provision for dynamic allocation of computing resources while at the same time isolating the affected system.

54. **Disaster Management System**. A full-fledged disaster management system needs to be developed so that valuable data generated over a period is not lost due to intentional/unintentional disaster. Data storage and recovery systems locally or in remote locations need to be accordingly put in place.

Propulsion and Power

55. **Gas Turbines**. There is a need to develop indigenous gas turbines in the range of 11-15 MW and 20-25 MW for fitment on future ships as main propulsion units. The Inter-cooled Recuperated WR 21 gas turbine developed by Rolls-Royce and Northrop Grumman offers a 30% reduction in fuel consumption and a flat Specific Fuel Consumption (SFC) curve over entire operating range, when compared to contemporary Gas Turbines. These GTs combine the best of diesel and gas turbines, i.e., low SFC at part loads and high power density and fulfills the role of both Cruise Diesel and Boost Gas turbines. Such gas Turbines, with reduced IR signatures due to their low exhaust temperature, have to be developed. Adequate emphasis has to be laid on development of gas turbines with enhanced aerothermo-dynamics. This may involve improved designs of compressors for attaining higher pressure ratios as well as better combustion chamber designs for achieving higher turbine entry temperatures, thereby achieving higher power output. Developments in the field of advanced materials for combustion chamber and turbine blades would also be required to achieve enhanced power outputs.

56. **Diesel Engines**. Developments in the field of diesel engines are driven by stringent environmental regulations and requirements of multi-fuel operation and long service life. Technological advancements are required for reduction of emissions and improving combustion efficiency in diesel engines. Development of technology for use of Rheological fluids for torsional damping in diesel engines may be taken up for achieving better power to weight ratios and better torsional damping characteristics, across the entire power range of the engine.

57. <u>Air Independent Propulsion (AIP)</u>. The trends in the area of non-nuclear AIP propulsion system have been mainly focused on development of Stirling engines, the MESMA steam turbine system and fuel cell power packs. Further, operational considerations like low noise levels, shallow water capability, size and manoeuvrability issues had rekindled interest in non-nuclear AIP solutions. It confers tactical flexibility by cutting down the indiscretion ratio thereby improving the survivability of a non-nuclear submarine. Development of these technologies would also reduce the dependence on fossil fuels. 58. **Fuel Cells**. Fuel cell technology is receiving considerable attention worldwide as it provides a viable AIP solution. The fuel cell power packs could be developed for submarine main propulsion as well as energy sources for various prime movers. The various types of fuel cells are elaborated as follows:-

Proton Exchange Membrane Fuel Cells (PEMFC). (a) The electrolyte in the PEM fuel cell is a thin polymer membrane (such as poly perfluorosulphonic acid, NafionTM, which is permeable to protons, but does not conduct electrons, and the electrodes are typically made from carbon). Hydrogen flows into the fuel cell on to the anode and is split into hydrogen ions (protons) and electrons. The hydrogen ions permeate across the electrolyte to the cathode, while the electrons flow through an external circuit and provide power. Oxygen, in the form of air, is supplied to the cathode and this combines with the electrons and the hydrogen ions to produce water. Each cell produces around 0.7 volt, in order to generate a higher voltage a number of individual cells are combined in series to form a structure known as a fuel cell stack. PEM cells work at high efficiencies, producing around 40-50 per cent of the maximum theoretical voltage, and can vary their output guickly to meet shifts in power demand. These are already available commercially for low power applications and can be used to provide back-up power supplies.

Alkaline Fuel Cells (AFC). The alkaline fuel cell uses an (b) alkaline electrolyte such as potassium hydroxide. NASA originally used such fuel cells on space missions. The electrochemistry is somewhat different in that hydroxyl ions (OH-) migrate from the cathode to the anode where they react with hydrogen to produce water and electrons. These electrons are used to power an external circuit then return to the cathode where they react with oxygen and water to produce more hydroxyl ions. Alkaline cells operate at a similar temperature to PEM cells (around 80°C) and therefore start quickly, but their power density is around ten times lower than that of a PEM cell so they are more bulky. These are the cheapest type of fuel cells to manufacture. However, their temperature requirements and size considerations restrict their utility for Naval applications.

(c) **<u>Direct Methanol Fuel Cells (DMFC)</u>**. The directmethanol fuel cell (DMFC) is similar to the PEM cell, as it uses a polymer membrane as an electrolyte. However, a catalyst on the DMFC anode draws hydrogen from liquid methanol, eliminating the need for a fuel reformer. Therefore, pure methanol can be used as fuel. These are still under development and may have utility as back-up supplies for low power applications.

Molten Carbonate Fuel Cells (MCFC). Molten (d) carbonate fuel cells use either molten lithium potassium or lithium sodium carbonate salts as the electrolyte. When heated to a temperature of around 650°C, the salts melt and generate carbonate ions, which flow from the cathode to the anode where they combine with hydrogen to give water, carbon dioxide, and electrons. These electrons are routed through an external circuit back to the cathode, generating power on the way. The high temperature at which these cells operate enables them to internally reform hydrocarbons, such as natural gas and petroleum, to generate hydrogen within the fuel cell structure. At these elevated temperatures there is no problem with carbon monoxide poisoning, and the platinum catalysts can be substituted for less expensive nickel. The excess heat generated can also be harnessed and used in combined heat and power plants. These fuel cells can work at up to 60 per cent efficiency and this could potentially rise to 80 per cent if the waste heat is utilised. Development work needs to be undertaken to improve their efficiency, as these hold good promise for Naval applications.

Phosphoric Acid Fuel Cells (PAFC). Phosphoric acid (e) fuel cell (PAFC) consists of an anode and a cathode made of a finely dispersed platinum catalyst on carbon and a silicon carbide matrix that holds the phosphoric acid electrolyte. Phosphoric acid cells work at slightly higher temperatures than PEM or alkaline fuel cells – around 150 to 200°C – but still require platinum catalysts on the electrodes to promote reactivity. The anode and cathode reactions are the same as those in the PEM fuel cell with the cathode reaction occurring at a faster rate due to the higher operating temperature. This increased temperature also imparts a slightly higher tolerance to impurities and phosphoric acid cells can function with 1-2 per cent carbon monoxide and a few ppm of sulphur in the reactant streams. Phosphoric acid cells though having lower efficiency and requirement of warming up time, have advantages like simple construction, stability and low electrolyte volatility. These have high potential for providing high power outputs, suitable for Naval propulsion systems including remote vehicles.

(f) **<u>Regenerative Fuel Cells (RFC)</u>**. This technology works on the same basis as a conventional PEM cell. The difference is that the regenerative cell also performs the reverse reaction that is electrolysis. The water generated in the fuel cell is fed to a solar powered electrolyser where it is separated into its constituent components of hydrogen and oxygen, which are then fed back to the fuel cell. In this way a closed system is formed which does not require external hydrogen generation. Dependence of these fuel cells on solar power may rule out their utility for naval applications.

(a) Solid Oxide Fuel Cells (SOFC). Solid oxide fuel cells operate at 800 to 1000°C and use a solid ceramic electrolyte, such as zirconium oxide stablised with yttrium oxide, instead of a liquid. These cells can reach efficiencies of around 60%. Energy is generated by the migration of oxygen anions from the cathode to the anode to oxidise the fuel gas, which is typically a mixture of hydrogen and carbon monoxide. The electrons generated at the anode move via an external circuit back to the cathode where they reduce the incoming oxygen, thereby completing the cycle. These cells are resistant to poisoning by carbon monoxide as this is readily oxidised to carbon dioxide. This removes the need for external reforming to extract hydrogen from fuel and these cells can again use petroleum or natural gas directly. Development of such fuel cells is still in an infancy stage.

59. **Fuel Possibilities**. Most types of fuel cells (FC) ultimately require hydrogen as a fuel source which can be generated in a number of ways, either from renewable sources, such as solar power, or from hydrocarbons, such as natural gas or alcohols, by reforming. It is possible to supply hydrogen gas directly and store in tanks on the

vehicle. The alternative option is to use liquid fuels and generate hydrogen within the fuel cell itself by the use of on-board reformers.

60. Of all the AIP systems under development, the phosphoric acid fuel cell is widely accepted potentially as the most viable solution. Fuel cells allow direct noiseless generation of electric power with much better efficiency than existing power plants. Efforts would have to be made to indigenously develop such fuel cells for marine applications.

61. **Electrical Propulsion**. Electrical propulsion technology is maturing at a fast pace for marine applications. This technology provides considerable advantages in terms of higher efficiency, increased flexibility in installation, improved survivability, lower noise signatures, reduced maintenance and manning requirements and considerable savings in through-life ownership costs. Due to these inherent advantages, commercial shipping has already adopted this technology extensively and the technology is being increasingly adopted for warship applications. Advanced navies like the US Navy, Royal Navy and French Navy already have inducted electric propulsion in their platforms and in the not too distant future, this is expected to become the standard technology for Naval propulsion packages including electric OBMs for smaller boats.

62. Most of the elements required for adoption of this technology in warship applications are already available in the international market. Though no special R&D efforts are required for adoption of this technology, indigenous production and high capacity power electronics related systems design capabilities need to be built up through the ToT route. The progressive development in fuel cells and super-conductivity technology will make the electrical propulsion option more attractive.

63. Marine Engineering Systems.

(a) **Optimal Pipe and Duct Design**. Computational Fluid Dynamics studies for aerodynamic (low-noise) fluid flow in ducts and pipes needs to be taken up. The flow-induced noise through pipes and ducts constitutes a major component of the overall underwater noise emanated from the ship besides contributing

to adverse habitability conditions on board. Irregular flow patterns are also the main factors for high wear rate of the pipe and ducting systems. Tools such as CFD can be employed for optimal design of ducts and pipes to attain better fluid flow characteristics leading to reduced noise levels, lesser wear rate and better heat transfer.

(b) **Low-noise Gearboxes**. Noise generated from a gearbox contributes considerably to the overall noise level of the ship. Techniques such as finite element analysis should be developed to design compact and silent gearboxes. Advanced manufacturing techniques, metallurgical processes and materials are required to be developed to meet the silent gearbox standards.

(c) Advanced Motion Control Systems/ Motion Interceptors for Roll and Pitch Stabilisation for Naval Platforms. The motion interceptor is primarily a plate extending below the transom, which intercepts the flow of water. It reduces the flow velocity locally thereby increasing the pressure on the hull and generating a lift force. The forces generated by blade immersion are controlled to provide trim and list stabilisation and damping of pitch and roll rate accelerations. An interceptor system comprises of a sensor package, central processor, display unit, hydraulic power pack, servo controller/ manifolds, actuators and interceptor blades. The interceptors are ideally suited for high-speed crafts for speeds above 25 kts. The same concept could be developed for the entire speed range for exploitation of the surface combatants. The advantages of the motion interceptors over the existing stabiliser systems are lightweight, low power and non-vulnerability to damage.

64. **Production and Design Technology**.

(a) It is essential to develop technology for use of airlubricated bearings for use in high-speed turbines, rotating machinery etc. Air lubricated bearings would offer advantages of reduced friction levels, operating temperatures, longer life due to lower wear rate and reduced Specific Fuel Consumption of turbines. (b) Developments in design and manufacturing technology would help in arriving at futuristic aspects of shipbuilding and repair yard technology. Some areas of potential development are as follows:-

(i) Analytical tools, viz., Bond graphs for machine design.

(ii) Advanced machining technologies for manufacturing components.

(iii) Computer-aided production, planning & control relevant to warship aspects.

(iv) Investment casting technology.

<u>Warship Design</u>

Introduction. The *IN* has an ambitious on-going ship 65. construction programme with majority of the ships being constructed indigenously. Indigenous ship construction activities have basically utilised conventional hull forms, largely utilising ferrous materials such as carbon steel, low alloy steel and cast irons. Non-ferrous materials like aluminium, titanium and copper alloys are also being utilised for limited applications. Emerging technology trends in warship design, material sciences and stealth technology are set to revolutionise warship building, providing platforms with better speeds and sea keeping qualities, higher equipment package density without compromising on weight to power ratio, enhanced stealth features, reduced maintenance efforts and more comfortable living conditions within the platforms. Advanced Navies are already making rapid strides in various associated areas towards enhancing their capabilities. Indigenous development & early realisation assumes urgency keeping in view the large gestation period of these and resultant ship building efforts.

66. **<u>Hull Forms</u>**. At present, our indigenous ship-building programme is predominantly based on conventional Mono-hull forms. Development in new hull forms are expected to open up a wide range of possibilities in designing ships for different operational roles, with

better sea keeping capabilities, higher speeds, larger pay loads and improved survivability. Certain important newer hull forms are broadly outlined in the succeeding paragraphs.

67. <u>Air Cushion Vehicles (ACV)</u>. ACVs riding on a cushion of relative low-pressure air, with speeds in excess of 80 knots are already available in the international market. These vehicles have enormous potential for fast attack missions, over-the-beach assault capabilities and even mine-hunting. Landing Craft Air Cushion (LCAC) have already emerged as key ingredients for amphibious operations with its inherent ability to launch assaults from extended ranges against almost any beach head.

68. **Surface Effect Ships (SES)**. The SES, like the ACV utilises pressurised air cushion to reduce resistance to motion. These incorporate rigid catamaran – style side hulls to enhance stability and manoeuvrability. High speed and improved sea-keeping make them suitable candidates for fast attack missions, and this hull type is less susceptible to below water level mine explosions compared to Monohulls.

69. Small Water-plane Area Twin Hull (SWATH). This hull form has a pair of fully submerged hulls on which slender struts are mounted to support a cross-structure. In addition to providing better sea keeping quality compared to Mono-hull vessels, SWATH exhibits less fall-off in speeds with increasing sea state. This hull form permits providing big-ship platform steadiness and ride quality in smaller vessels, with ability to sustain high proportion of normal cruising speed in rough head seas. SWATH ships are expected to have less than 50% water-plane area compared to Mono-hulls of equivalent displacement. SLICE hull, a derivative of SWATH, with four strut hulls, or pods, are also under development and are claimed to provide higher speeds compared to Mono-hulls with the same power, lower installed power and fuel consumption for the same speed, higher flexibility in strut/hull arrangements and lower wake signature at high speeds. SWATH mine hunters are already under design by some countries, and, in future, may also be utilised for deploying and recovering remote vehicles.

70. **Catamaran**. Vessels with two parallel and abreast hulls attached to a common deck have been demonstrated commercially to exhibit better performance than mono-hulls in a speed range of 35 to 40 knots. At present, their use is limited for restricted/ coastal water applications due to their inferior sea keeping qualities in the openseas. However, design improvements and derivatives like trimaran and pentamaran hulls have promising potential. Littoral Combat ships based on trimaran hull, high speed corvettes and versatile frigates designs utilising pentamaran hulls are already on the drawing board in certain countries.

71. **Specialised Crafts for Discreet Usage**. The warship design program should include research in design and fabrication of Specialised Crafts for clandestine operations by Special Forces. These include fully submersible and semi-submersible manned crafts with the ability to traverse both on surface and under-water.

72. **Other Hull forms**. Various other newer hull forms like Delta Hulls, Planing Hulls, M Hull forms and Hybrid Hull Forms are also under extensive investigation by other advanced navies.

<u>Stealth</u>

73. Incorporation of stealth features in warships is gaining increasing importance to counter emerging threats due to rapid advancements in the field of sensor technology, signal processing and intelligent ammunition. Concepts such as integrated topside systems and vertical launch weapons for reducing RCS, development of acoustic silencing techniques for underwater signature reduction and cooling techniques for IR signature reduction are receiving increasing attention in ship design / construction. The process of building-in stealth in new constructions necessarily needs to commence at the drawing board stage itself. Important aspects that need to be covered for realising stealthy warships are broadly outlined in the succeeding paragraphs.

74. **<u>Radar Signatures</u>**. Structural surfaces and corners, deck fittings, weapon mountings, Masts, radar antennae, communication antennae, etc., are good reflectors of EM energy and contribute to increasing the RCS of ships. RCS reduction techniques involve suitable

shaping of upper structures including multi-surfacing, rounding of corners, concealment of high EM energy scatterers and use of special radar absorbent / transparent materials. Existing knowledge base on RCS management needs to be continually developed for implementation on new constructions. While RCS minimising measures are best incorporated in new constructions, development of suitable radar absorbent paints would enable some degree of RCS reduction on existing ships also. Radar Absorbent Paints (RAP) in the frequency range of 8-12 GHz has been developed by NMRL and inducted for application onboard snort and periscope mast of submarines. Development of higher frequency range upto 40 GHz needs to be further explored.

75. **Acoustic Signatures**. Radiated noise of ships and submarines could be structure-borne (machinery, propeller, shafting, gears, transformers etc.), airborne (machinery) and water-borne (propeller, underwater openings, flow noise). Incorporation of suitable noise suppression measures, therefore, needs to be emphasized during ship design and construction. Measures incorporated include design of machinery foundations, low noise propellers with high cavitation speeds, system pipes arrangements, noise isolation acoustic / pads, flexible deck and bulkhead glands, use of flexible bellows / couplings, raft mounting of noisy equipment, etc. Noise signatures of current and future platforms can be reduced substantially by use of double mounting of equipment, use of further suitable sound and vibration isolation materials, isolation techniques and active vibration and acoustic signature control. Reduction of hydrodynamic flow noise and delayed onset of cavitation are also to be consistently worked upon. New propulsion concepts are also evolving for reducing acoustic emissions, with integrated electrical propulsion being a forerunner. While certain noise reduction techniques are already being incorporated in new constructions, progressive improvements need to be targeted. This therefore remains another focus area for indigenous R&D and equipment selection / installation. Mastic coating for reduction of underwater radiated noise ranging from 200-2500 Hz resulting in vibration damping of the order of 10-15 dB has been developed by NMRL and inducted for onboard application on as required basis. Development of similar coatings for vibration damping in lower frequencies < 200Hz need to be further explored.

Infrared (IR) Signature. Principal sources of IR signatures 76. are exhaust arrangements, impingement of exhaust gases on ship structures creating hot spots and hot superstructure surfaces due to Controlling IR signature involves reducing the radar heating. emissivity of exhaust gas outlet and plume and exposed hot surfaces. Since, hot spots are easy to detect, these need to cooled or screened from direct view of IR detection sensors. Use of IR suppression devices for hot exhaust gases, low emissivity paints, foil-covered windows, shaping hull and superstructures to reduce sunlight reflection, etc., are some of the conventional measures being adopted to reduce IR signatures. Emerging trends include alternate exhaust arrangements like shipside / transom exhaust arrangements with exhaust gas cooling by water injection, Hybrid IR suppression system like eductor-diffuser integrated with water injection systems, good thermal design principles, application of proper ventilation and insulation to exterior bulkheads to reduce outer skin temperatures, plume cooling, active cooling of hot surfaces with sea water, water mist systems, etc. IR measures are accordingly being incorporated in new design ships with developmental work being progressed through DRDO.

77. **Miscellaneous**. Emerging technologies are also being adopted for management of magnetic signatures, underwater EM signature and Extremely Low Frequency Emissions (ELFE) from Impressed Current Cathodic protection (ICCP) systems.

Materials

78. A variety of materials are required for ship construction/ upkeep. These range from structural steels to composites and encompass insulation materials, deck covering materials, materials for piping and fixtures, coating door and latches, deck blocks, cable chains, main machinery, sonar domes and paints for surface protection. Until recently we were completely dependent on imported steels for warship construction. While this situation has now been remedied to a large extent, continual R&D effort is required for developing emerging exotic materials, composites and paints.

79. **Ship Building Steel**. DMR 249A steel for ship building and DMR 301 & 249B certified steel for submarine application have been

developed successfully for indigenous ship and submarine building programmes. Development of further high strength steels with yield strength of 1000 MPa for submarine constructions is in hand for which industry support would be required.

80. <u>Weld Consumables</u>. Sources need to be developed to make weld consumables HLES steel used on Submarines.

81. **<u>Composites</u>**. High grade composites need to be developed for the following:-

(a) Fabricating items such as doors, hatches, ventilation flaps, hanger shutters etc.

(b) High grade Carbon Fibre Reinforced Plastic (CFRP) composites for masts, super structures, which can thereafter be suitably integrated with the main hull to provide stealth and reduce top weight of warships.

(c) Propellers for ship as well as torpedoes based on composite materials are required to be developed in order to improve stealth features.

(d) Suitable composite armour materials also need to be identified / developed to provide protection for personnel against small and medium caliber arm firing. These materials can be embedded in panels which can be fitted at select locations on-board or slung on the side of the craft, and would not affect the endurance and speed of the vessel.

82. **<u>Titanium</u>**. Due to its inherent properties, use of titanium has major advantages in fabrication of structures such as sonar domes, high pressure pipelines, etc. Indigenous development in these areas needs to be pursued.

83. **<u>Cladded Metals</u>**. Cladded steels are excellent materials with both strength and chemical resistant properties. These are particularly suitable for battery storage compartments, which are highly prone to electrolytic corrosion/erosion.

84. **Direct Metal Deposition**. Casting complicated shaped items through conventional moulding techniques suffers from large rejection rates. New techniques in fabricating 3-D forms utilise direct metal deposition techniques, using LASER cladding. Consequently, dimensional accuracies are assured and rejection minimised. Technology in this field needs to be built up.

85. <u>Metallic Foams</u>. Metal foams have the potential to be used as sandwich/honeycomb material for minor bulkheads providing noise and weight reductions.

86. **Special Materials**. Future Naval systems will require technological advancements in the areas of superconductors and magnetic materials, organic materials and coatings, energetic materials, and high-temperature semiconductors. Naval applications for superconductivity include:

(a) Superconducting magnets for electrical motors and ship propulsion.

(b) Superconducting magnetic sensors for mine detection.

(c) Superconducting magnetic systems that store energy for burst power.

- (d) High-Q cavities for high-resolution radar system.
- (e) Low-power analog and digital circuits.

87. Further technology developments in materials engineering, manufacturing, and systems integration will be needed for realising the benefits of superconductivity in Naval applications. Since the discovery of High Temperature Semiconductors (HTS) in 1986, numerous applications have emerged, including superconducting cables, transformers, motors, and energy-storage devices. HTS conductors are typically fabricated as a multi-filamentary flat tape. These conductors use a ceramic precursor powder placed in a silver billet. The billet is then formed into a thin filament using commercial deformation processes, and multiple filaments are then placed into a silver tube and deformed again into a bundle of filaments. These steps

are repeated until the conductor contains the appropriate number of filaments. The conductor is then rolled into a flat configuration and heat treated to transform the ceramic precursor into а superconductor. This process is referred to as Oxide Powder In Tube conductors shown (OPIT). OPIT have linear performance improvements over the last 10 years, and manufacturing costs have steadily declined. It is now required to develop the next generation of HTS-coated conductors. Coated conductors use a thin film of HTS deposited onto a substrate; they exhibit significant performance gains as compared with OPIT conductors and can be significantly less expensive to manufacture.

88. **Engine Materials**. Materials to be used for future Naval engines should have reduced weight, increased temperature capabilities, improved mechanical properties, and better corrosion and oxidation resistance. Such high-performance materials include organic matrix composites, titanium alloys, and inter-metallic compounds. For turbine components, Nickel Aluminium (Ni-Al) polycrystalline materials could be extended so that they are available in a single-crystal form. Inter-metallic compounds, along with titanium-based metal-matrix composites such as TiAlNb with Silicon Carbon (SiC) fibres, may be useful for compressors. Static engine components will require high-modulus inter-metallic compounds such as g-TiAl. The high-temperature capability of super-alloys based on Ni-Al is expected to meet the 2,000°C requirement.

89. <u>Magnetic Materials</u>. Improved magnetic materials will be required for magneto-optic devices and high-sensitivity, low-cost magnetic sensors to be utilised as magnetometers, radio-frequency antennas, and biological and chemical sensors. Improvements in material properties through enhanced processing techniques and modelling will enable these applications.

90. **Advanced Energetic Materials**. The Naval forces, in addition to improved warhead explosion devices, require a competitive edge in the power and range of missiles. Advances in techniques for the synthesis of very dense organic compounds that are highly substituted with energetic groups will be required. The approach will be computationally based initially, followed by a synthesis simulation and prototype production. Continued development of new chemical

processes to produce novel energetic materials and improvements of initial chemical processes to produce novel structures economically and environmentally are essential.

91. **Insensitive Energetics**. Insensitive explosives are much safer than conventional explosives in handling, storage and operational exploitation. Research into insensitive energetics is focused on converting the whole explosive chain, from primary initiators to warheads into insensitive compositions. *IN* plans to induct armament with insensitive energetics in the future. Therefore, there is a need for enhanced focus on development of insensitive energetics.

92. Organic Materials–Flame-resistant, High-temperature Organic Composites. Polymers and polymeric composites are required for superior flame-resistant and high-temperature properties. These proposed materials are phthalonitrile-based composites with thermo-oxidative stability up to 500°C. These novel flame-resistant materials will enhance ship and submarine safety.

93. Smart Materials and Sensors. Smart materials technology consists of the application of ferromagnetic, ferro-electric, and ferroelastic materials, better known as shape-memory alloys, as mechanical actuators and/or sensors to improve the performance of components, structures, and systems. It is envisioned to integrate smart materials with nano-scale electronic processors resulting in mechanically and electrically adaptive elements. Many proposed systems will benefit from the utilisation of smart sensors. For example, smart sensors could increase the performance and efficiency of personnel and equipment in areas such as condition-based maintenance. Overall, a full assessment of smart materials and MEMS materials will need to be carried out. System integration including data sampling, networking, and communication issues will have to be addressed. Smart materials on the micro-scale will be combined with electronics on the nano-scale to form smart sensors, all as part of a micro-nano-electronic technology thrust.

94. **Nano-Phase Materials**. A new emphasis in material science centres on the nanometer (10^{-9} metre) size regime, which is intermediate between the well-studied macroscopic and atomic size regimes. The understanding of structural and compositional features

in the nanometer size range will facilitate the control of the magnetic, electrical, and optical properties of materials. Nano-phase or nano material is an area of prime importance for future Naval applications, especially with the expected conversion of most ships to integrated electric power and propulsion systems. Magnetic nano-materials may offer dramatically improved performance for magnetic-storage applications. The enhanced strength of nano-phase coatings and the potential for improved mechanical behaviour of consolidated nanocrystalline has obvious applications in the area of structural materials. One important example is the super-plasticity of nano-crystalline materials, a property appropriate for missile nose cones and armour. Nano-phase materials could be combined with nano-scale electronics to produce a new class of sensors able to achieve ultra-high-speed and low-power dissipation.

95. The capacity to carry out high-resolution lithography capable of manufacturing devices with critical dimensions on the order of a nanometer is required before nano-phase materials technology can become practical for Naval applications. Other related technologies that will require further development before nano-phase materials can be widely deployed include plasma-etch technologies and interconnects for quantum electronics. In photonic systems, nano-phase structures will enable the development of nonlinear optical systems or possibly smart nano-sensors that are optically interconnected to form a highly capable meta-sensor.

96. **<u>High-temperature Structural Materials and Coatings</u>**. High-temperature materials and coatings, include metal composites, ceramic-metal composites, inter-metallic alloys, and carbon-carbon composites. They are amenable to low-cost synthesis through the application of computational materials design and useful in a number of applications including aircraft engine components. Metal-matrix composites will meet most of the requirements for materials that can withstand temperatures up to 500° C. Oxide materials, such as the yttrium aluminium oxides are needed for systems, which require components to withstand 1,000 to 2,000° C. Metallic and ceramic surface coatings are currently used to improve the performance, prolong the service life and reduce maintenance of advanced turbine materials. Protective coatings used in aircraft, marine, and power generation turbines to increase operating temperatures extend component life by providing protection from high-temperature oxidation and high-temperature corrosion. Advances in ceramic coatings will be required for future Naval systems. In the temperature range of 1,500 to 2,100°C, materials such as silicon carbide, silicon nitride, and other systems are able to limit oxidation will be needed. Microwave and laser processing technologies have to be developed for these difficult-to-shape materials. For systems above 2,000°C, carbon-carbon composites, diamond-like coatings, synthetic-diamond thick films, and carbides such as boron tetra-carbides and titanium carbides will be needed.

97. **Processing and Synthesis of High Temperature Structural Materials**. Technologies that may enable the manufacture of high-temperature structural materials are rapid solidification (splat cooling) and electron-beam evaporation. These techniques will allow the development of lamellar composition and functionally graded materials. Methods of processing of fibre with a polymer matrix that combine joining processes with material synthesis will be needed. Research into development of polymer driving bands for ammunition is underway at IIT, Delhi. Development of novel polymers for more defence applications is needed, especially in lighter, fire resistant ammunition packaging.

98. **Coating Technology**. Coating of materials provides thermal protection and increased abrasion resistance. There is an urgent need for development of high temperature coatings especially in gun barrel and cartridge case applications.

99. **Newer Materials**. In the future entirely new and enhanced materials are expected to be designed and manufactured using a computational approach and atomic seal understanding of material physical and mechanical properties. Monoplane materials, smart materials, heterogeneous materials, superconducting materials, high temperature materials, functional materials are a few examples which have high potential for Naval applications.

100. **Protective Technologies**. Protective coatings involving Stratified anticorrosive/ antifouling coating and Non-skid coating for flight decks needs to be developed for applications on warships.

101. **Stealth Materials**. In order to reduce acoustic signature suitable development of low frequency multiple layer damping coating, vibration damping coatings is needed for applications on warships.

102. **IR Reflective Coating**. Development of corrosion resistant IR reflective coating for improving habitability onboard warships by minimising the heat transfer from sun radiation to the substrate is required.

Autonomous Systems and Robotics

103. Autonomous systems exploit sensors and other data sources to gather information on their environment, use advanced algorithms and Artificial Intelligence to process and understand it, and make decisions about how to respond, and perform tasks – whether physical or virtual – to achieve assigned goals. Robotic systems are automated machines that carry out complicated actions independently of, or in conjunction with, humans.

104. Some of the illustrative applications are:-

(a) Replacing human operators with machines in high-risk environments, such as logistics resupply or explosive ordinance disposal.

(b) Maximising the effectiveness by allowing personnel to focus on complex tasks while the simple and low- value tasks are delegated to machines.

(c) Exceeding the performance of a human operator by taking actions autonomously, such as in response against anti-ship missile threat.

(d) Generating physical mass in the battlespace through resilient swarms of low-cost systems.

(e) Integrated human- machine teams which use the respective strengths of both humans and autonomous systems.

(f) Supporting an active military presence in areas where it would not traditionally be possible.

105. Autonomous Vehicles. Autonomous Vehicles will progressively find increasing use in the Naval applications. Autonomous Aerial Vehicles (AAVs)launched from shore / ships provide tremendous potential and force multiplication for reconnaissance, surveillance, co-operative engagement and as platforms for autonomous weapon release. Rapid evolution of technologies related to increasing mission pay-loads, improving sensors (including sensors combined with weapon systems) and aeronautical technologies (navigation, autonomous control, propulsion) make AAVs very valuable tools for a variety of Naval operations. The operational spectrum of these AAVs will include reconnaissance, C2, target discrimination and identification, battle damage assessment, data transfer, Electronic Counter Measure (ECM), Electronic Support Measure (ESM), Electronic Counter Counter Measure (ECCM) and combat support / identification in case of shore bombardment and amphibious operations. AAVs will act as force multiplier and represent the 'eyes' of Naval units in the future, providing them the possibility to see in real-time-over-the-horizon. They may in future be used in-lieu of helicopters for certain roles.

106. **Autonomous Surface Vehicle**. Autonomous surface vehicles have a diverse employability for the *IN*. These range from benign missions eg collection of MET data, Tsunami warning to an offensive role eg swarm attack, *Kamikaze* attacks on opportune afloat/ashore targets, ISR etc.

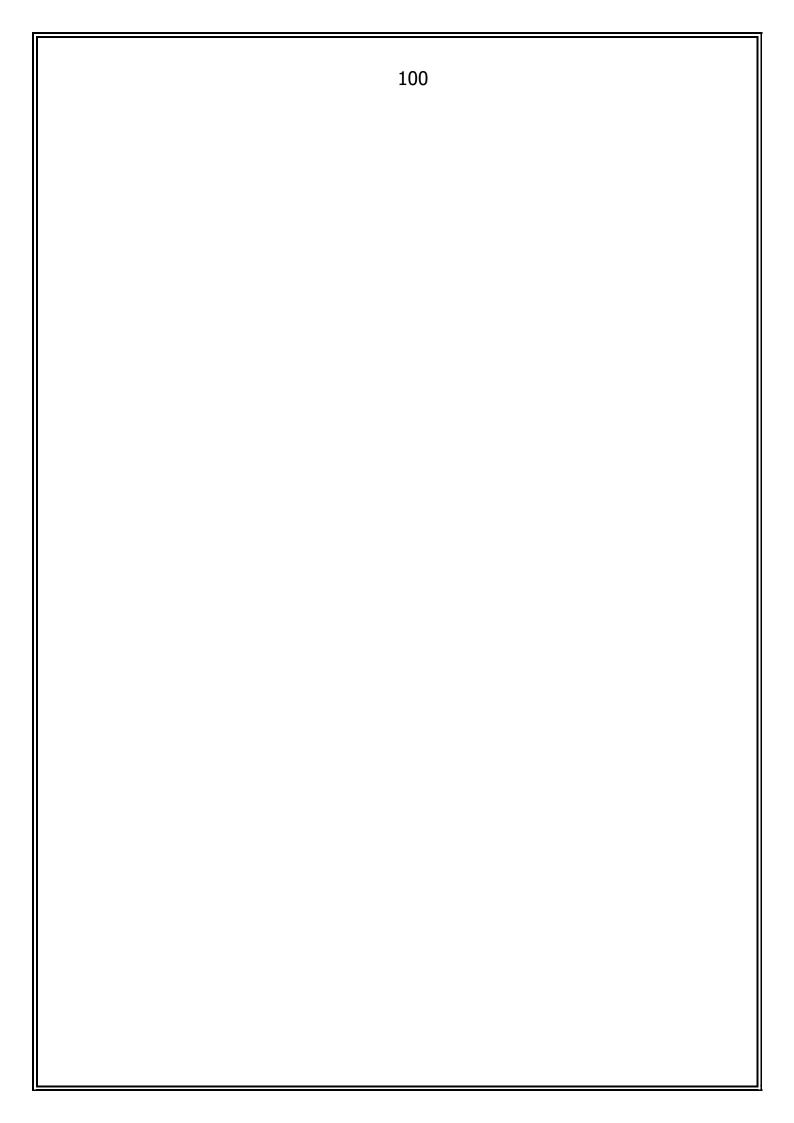
107. **Autonomous Underwater Vehicles (AUVs)**. These vehicles would enhance operational capabilities of Naval forces in underwater warfare, reconnaissance and surveillance. Potential AUV missions include shallow-water mine reconnaissance and counter proliferations in harbours. The US Navy has already acquired a Long-term Mine Reconnaissance System (LMRS), which is a submarine launched and submarine recovered counter-mine system. Future capabilities of UUVs would also include ability to carry a limited range of weapons for attacking detected targets. In the future, surface ships operating in littoral waters can be expected to encounter novel threats like intelligent sleeping mines, frogman, miniature submarines, intelligent

torpedoes, etc. Counter-measures already being progressed to include artificial, remote-controlled 'fish', equipped with explosive loads that can be activated through acoustic means.

Artificial Intelligence

108. Technological advancements in Artificial Intelligence (AI) and fuzzy logic will help in making advanced decision-making and decision support systems available. The new generation platforms that the *IN* operates are equipped with cutting edge technology systems. This puts it in an advantageous position to develop and absorb new Artificial Intelligence/ Machine Learning (AI/ML) based technologies that are becoming increasingly popular with the military and industry. Some of the areas where AI/ML technologies can be implemented are as follows:-

(a) Automated computer-network defence – real time anomaly detection and patching of vulnerabilities.


(b) Logistics – improved and automated stock management and resupply.

(c) Performance optimisation – real-time monitoring of data about equipment to predict problems and target appropriate interventions such as repairs.

(d) Intelligence analysis – new kinds of advanced analytics to identify patterns and anomalies in large, diverse datasets, freeing up human analytical capacity and supporting more complex assessments.

(e) Autonomous platforms – systems that sense and understand their environment, decide how to respond, and then perform tasks to achieve goals, overseen by humans.

(f) Streamlining administrative back office functions such as HR and finance.

Appendix 'A' (Refers to Para 26 Chap 3)

INDIGENISATION REQUIREMENT OF EQUIPMENT AND SYSTEMS MARINE ENGINEERING

<u>Ser</u>	Description				
<u>Mair</u>	Main Propulsion Equipment				
1.	Marine Diesel Engine (Capacity: 3-10 MW)				
2.	Gas Turbine Engines (Capacity: 20-30 MW)				
3.	Electric Propulsion System (Capacity: 6-10 MW)				
4.	Shafting System-Plummer Blocks and Shaft				
т.	(with capability to design and integrate)				
5.	Fixed Pitch and Controllable Pitch Propeller for Frigate and				
5.	Destroyer Class of Ships				
6.	Waterjet Propulsion System				
7.	Optical Torsion Meter				
8.	Boiler Control System-INS Vikramaditya				
9.	Hydrogen Based Engine (1-3 MW)				
10.	Marine Diesel Engine with Stern Drive (330 HP)				
11.	Reduction Gears (1-50 MW)				
12.	Main Propulsion Control System for Gas Turbine				
<u>Pow</u>	ver Generators				
13.	Gas Turbine Generators (Capacity: 1-4 MW)				
14.	Steam Turbo Generators (Capacity: 1-2 MW)				
<u>Aux</u>	iliary Equipment				
15.	Magnetic Bearing Compressor for AC Plant				
16.	Bilge Oily Water Separator				
17.	Variable Stroke Gear (VSG) Pump for Steering and Stabiliser				
17.	System				
18.	Magnetic Bearing Pumps				
19.	Fuel Transfer Pump with Motor (400 TPH)				
20.	AVCAT Transfer Pump				
21.	Advanced Motion Control Systems/Motion Interceptors for Roll				
	and Pitch Stabilisation				
22.	Turbo Blower Unit-INS Vikramaditya				
23.	Turbo Driven Forced Lubrication Pump-INS Vikramaditya				
24.	Turbo Driven Circulator Pump-INS Vikramaditya				

1	0	2

<u>Ser</u>	Description		
25.	Composite Material Sea Water Pump 125 TPH		
26.	Composite Material HP Air Bottles		
<u>Misc</u>	Miscellaneous Item		
27.	Bow Thrusters		

Point of Contact:-

Directorate of Marine Engineering NHQ/ MoD, 129/A, Sena Bhawan, New Delhi 110 011 Telephone: 011-23010802, 23010622 Email: dme@navy.gov.in

Appendix 'B' (Refers to Para 6 Chap 4)

INDIGENISATION REQUIREMENT OF EQUIPMENT AND SYSTEMS OF SUBMARINES

<u>Ser</u>	Description
1.	Telescopic Hangers
2.	Integrated Platform Management System (IPMS)
3.	Hoistable Mast
4.	De-Mineralised Water (DM) Plant
5.	System Valves (Hull and Doubler)
6.	HP Air Compressor
7.	MU12 Volumetric Pump
8.	MU12 B Hydraulic Pump
9.	MU12 D1 De-Mineralised Pump
10.	MU12 D2 Self Priming Pump
11.	MU12 D3 Centrifugal Pump
12.	Diesel Exhaust Valves
13.	Turbo Charger-1.1 MW Diesel Engine
14.	Emergency De-Ballasting System
15.	Rosa 42 System for EKM Submarines
16.	Diesel Governor for EKM Diesel Engine
17.	Steering Console
18.	LoX Tank for Air Independent Propulsion

Point of Contact:-

Directorate of Marine Engineering NHQ/ MoD, 129/A, Sena Bhawan, New Delhi 110 011 Telephone: 011-23010802, 23010622 Email: dme@navy.gov.in

PAGE LEFT BLANK INTENTIONALLY

<u>Appendix 'C'</u> (Refers to Para 2 Chap 5)

INDIGENISATION REQUIREMENT OF AIRCRAFT HANDLING EQUIPMENT

<u>Ser</u>	Description	Point of Contact
1.	Ship Based Hoisting and Lifting Equipment (Aircraft / Vehicle/ Lifts and Cranes)	Directorate of Marine Engineering NHQ/ MoD,
2.	Arresting and Restraining Gear	129/A, Sena Bhawan,
3.	Carrier Based Fixed Wing Aircraft Arrester Wire Recovery System	New Delhi 110 011 Telephone: 011-23010802
4.	Aircraft Catapult Launch System	Email: dme@navy.gov.in
5.	Dynamic Positioning System	
6.	Flight Deck & Hangar Fixed Fire Fighting System	Directorate of NBCD NHQ/ MoD, 2 ND Floor, 'D' Block, Defence Offices Complex, Africa Avenue, New Delhi -110023 Telephone: 011-26771564 Email: <u>dnbcd@navy.gov.in</u>

PAGE LEFT BLANK INTENTIONALLY

107

Appendix 'D' (Refers to Para 31 Chapter 7)

INDIGENISATION REQUIREMENT OF NAVAL ARMAMENT STORES

<u>Ser</u>	Item Description	End Use	Point of Contact
1.	Universal Proximity and DA Fuze for 76/62 Gun Ammunition (with Electronics Adaptable to 76 mm to 127 mm Ammunition)	76/62 SRGM Ammunition	Directorate of
2.	Indigenous Development of Effectors for Anti Torpedo Countermeasure System (5" Mobile Target Emulator) for P-75 Submarines	Countermeasu re for P-75 Submarines	
3.	Development of Limpet Mines Mk-414 (07 Kg) and Mk-430 (15 Kg)	Clandestine operations	Armament Production & Indigenisation,
4.	Extended Range Anti- Submarine Rocket (ER-ASR)	RGB-60	Naval Headquarters
5.	Guided Pinaka Rocket for Naval Application	Beach Softening	West Block -V, Wing No. 5 (FF)
6.	Ctge Submerged Ejector Signal	Signalling	RK Puram,
7.	500 Kg GP Bomb	Mig 29K	New Delhi –
8.	Insensitive Munition (IM)	Naval Warheads	110 066 Tele:
9.	Indigenisation of Signal Flares (Red Star, Green Star, Red Smoke & Green Smoke) and Anti-Submarine Decoy for P-75 class Submarines	P-75 Submarines	01126194691 Email: dapi.ihq@navy. gov.in
10.	Indigenisation of Chaff Cartridges for MiG 29K	Mig 29K	
11.	Indigenisation of Chaff Cartridges for P 8I	P 8I Aircraft	
12.	Development of Microwave Obscurant Chaff	Kavach Rockets	

108				
<u>Ser</u>	Item Description	End Use	Point of Contact	
13.	Universal FIAMs	Light Weight Torpedoes (LWTs)		
14.	IR Decoy	Kavach LRCR, MRCR & SRCR		
15.	Safety & Actuating Mechanism (9E129/ PIM 9E129)	Kashmir		
16.	Booster Engine 78 Д -Т	URAN and KH- 35E		
17.	Ignition Cartridge K-716-1 (Y- 418) (for Ignition of Booster Engine Igniter)			
18.	Igniter B-287 (for Ignition of Solid Propellant Charge of Booster Engine)		Directorate of Armament	
19.	Modification of MRCR Kavach Rocket	Kavach	Production & Indigenisation,	
20.	Igniter – 3T-10 (for Booster and Combat Motor)		Naval Headquarters	
21.	Booster Stage GG		West Block -V,	
22.	Igniter – 3T-20 (for Booster and Combat GG)		Wing No. 5 (FF) RK Puram,	
23.	Combat Stage GG		New Delhi –	
24.	Booster Motor 3Л -10M with Propellant 3Ш-10M	CLUB	110 066 Tele:	
25.	SPME (Combat motor) 3Д-52 with Propellant 3Ш-59		01126194691 Email:	
26.	Explosive Bolt 15 X 569-2		dapi.ihq@navy.	
27.	Igniter – 83Р-ПЗ-З (Push Apart Mechanism Booster and SPME)		gov.in	
28.	Gas Generator -Ш-521			
29.	Igniter B-521			
30.	30 mm Barrel using Alternate Material	AK-630 Gun		
31.	30 mm Barrel Nitrocarburizing	AK-630 Gun		
32.	Kavach Chaff Rockets	Kavach LRCR, MRCR & SRCR		
33.	Electromechanical Fuze	Mini Depth Charge(MDC)		

109			
<u>Ser</u>	Item Description	End Use	<u>Point of</u> Contact
34.	Practice Heads (PHs) for Modified Oxygen Torpedo	53-65KE Torpedo	Contact
35.	Standalone Miniaturised Telemetry Package	Missiles	
36.	Contact Exploder N-239	CET 65E, TEST 71ME	
37.	SRGM Ordnance	SRGM	
38.	РРЗСР	Fire Extinguisher on Board INS Vikramaditya	
39.	Contact Explosive Device	TE2-02 article	
40.	30mm Proximity Fuze	30mm	
41.	Development of Steel Cartridge Case for 76/62 SRGM	76/62 SRGM	Directorate of Armament
42.	Development of Steel Cartridge Case for 30mm	30mm	Production & Indigenisation,
43.	Development of Single/ Double Base Gun Propellant	Ammunition	Naval Headquarters
44.	Development of Double Base Propellant for Rockets	Ammunition	West Block -V, Wing No. 5 (FF)
45.	Ring Laser Gyro	Tal Mk-I	RK Puram,
46.	Otto Fuel Based Propulsion System	HWT/ LWT	New Delhi – 110 066 Tele:
47.	Al-Ago Batteries	HWT/ LWT	01126194691
48.	Development of Mg Alloy for Sea Water Activated Battery	Torpedoes	Email: dapi.ihq@navy.
49.	Rocket Motor		gov.in
50.	Safety & Actuating Mechanism along with Detonator, Squib and Pellet	Barak	J
51.	TVC Explosive Bolts		
52.	Thermal Battery (including Squib and Ignition Tape)		
53.	Electronic Pack 2517.040.0050	TEST 71ME	
54.	Towed Reel БК4.769.010-01	TEST 71 Afterbody	
55.	Headlight 2517.034.0000		

<u>Ser</u>	Item Description	End Use	Point of
56.	Depth Sensor 1563.039.0500	Ballast less	<u>Contact</u>
50.	Bollard 2526.003.009	Practice Head	
57.	Bollard 2320.003.003	- TEST 71ME	
		For CET 65E	
58.	N239 Contact Exploder	and TEST	
		71ME	
59.	Pressure Pick Up- 260.07.002-1	SBC	
60.	Towed Reels	Compartment	
61.	Torpedo Reel	– TEST 71ME	
62.	Hydraulic Pump with Reduction	Afterbody –	
	Unit 2517.011.0000-01	TEST 71ME	
63.			Controllerate of
64.			Naval
65.	Equipment Switch		Armament
	2517.070.0050		Inspection (West)
66.	Retarder 2526.014.000		Naval
67.			Dockyard,
68.	Noise Maker 094.033.000-I		Gun Gate,
69.	Propeller Lock 2517.545.0026		Mumbai
70.	Air Flask / Long Life Balloon (LLB) 260.030.122	•	400023
71.		65E)	Tele: 022-
72.			22751977
72.	4w-NRV, Retarder, COD,		Email:
73.	Pneumatic Switch		wnccnaimb@na
/ 31	(260.030.106)		vy.gov.in
	COD – Battery Diaphragm		
74.	260.030.047		
75		Afterbody	
75.	Inverter of Mod 3	(A244S)	
		Middle section	
76.	Battery Section of Mod 3	of torpedo	
		(A244S)	
		Motor of Mod 0	
77.	RPM Sensor	Torpedo	
		(A244S)	
78.	FIAM Mod 3 (SET) with	LAUNCH -	
	Accessories WMP 324400405	A244S	

<u>Ser</u>	Item Description	End Use	Point of
	Transducer, Pressure		<u>Contact</u>
79.	N211000200, N211000202		
80.	SRP Electronics W036718		
81.	SRP Electronics Cable W036539	Ex-Head - A244S	
82.	Sensor Box W003198		
83.	Pinger Cable WCP324400019A		
84.	Pinger N21000200		
85.	Arming Device Of Mod 0 And Mod 3 W002257	Combat (A244S)	
86.	Acoustic Head For Mod 3 Torpedo WMP324400429	Homing Head (A244S)	Controllerate of Naval
87.	Yoke For Elevator Assembly W005716	Afterbody - A244S	Armament Inspection
88.	Tie Rod (WMP32440000295) Nut (WMP324400292A) Washer (WMP324400290)		(West) Naval Dockyard, Gun Gate, Mumbai 400023 Tele: 022-
89.	Inclinometer N215000200	Control Section	
90.	Pressometer Support WMP324400232	- A244S	
91.	A-B Connector	SUT (SUT	
92.	Hose with Coupling 297.903 396	•	22/519// Email:
93.	Section 1 Assembly 9M317.0100.000-05	Shtil Missile	wnccnaimb@na vy.gov.in
94.	Section 4 Assembly 9M317.0400.000-02		
95.	Section No.4 9M381∍.0401.000-01		
96.	Radar Homing Head (RHH) 9∋501э	Kachmir	
97.	Radio Fuse 9>241M1>	Kashmir	
98.	Auto-pilot БУ-10		
99.	Turbo Generator Power Supply Unit 95256		
100	Missile Balwanka 3M14eBW		

<u>Ser</u>	Item Description	End Use	<u>Point of</u> Contact
	Missile Mockup 3M14ETBM and	Series	Contact
101.	3M54ETBM	Inspection of	
		EKM	
		Submarines	
102	Imitator-R	EKM	
102.		Submarine	
103.	Cross Gauge	EKM	
105.	L	Submarine	
104.	Cross Gauge	Kalvari class	
101	<u> </u>	submarine	
105.	Caliber Jig	Shishumar	Controllorato of
		Class	Controllerate of Naval
	Uran SDD	Uran	Armament
107.	KH-35 Explosive Bolts	KH-35	Inspection(Wes
108.	MVDP Equipment	SSK	t)
		Submarines	Naval
109.	Mobile Target Emulator (MTE) for C-303 Decoy system	Kalvari Class	Dockyard,
110	Safety & Actuating Mechanism		Gun Gate,
	Solid Propellant Rocket Motor		Mumbai 400023 Tele: 022- 22751977
	RM Igniter		
	Igniter Cartridge	RVV-AE	
	Thermal Battery Assembly		
	Battery Igniter		Email:
	Safety & Actuating Mechanism		wnccnaimb@na
	Solid Propellant Rocket Motor		vy.gov.in
118.	RM Igniter		
119.	Gas Generator Propellant	R-73E	
120.	Gas Generator Igniter	R-73E	
121.	Igniter Cartridge		
122.	Thermal Battery Assembly		
123.	Battery Igniter		
124.	Tube Safety Device 243.17.000	53-65 KE	
125.	Forward Propellers	Tail Unit	
123.	A666.393.030-01	(TEST 71ME)	
126	Aft Propellers A666.393.031-01	Tail Unit	
120.		(TEST 71ME)	

C		E. d. H.	Delated
<u>Ser</u>	Item Description	End Use	<u>Point of</u> Contact
	Horizontal Rudder 033.046.000-	Tail Unit	contact
127.	01	(TEST 71ME)	
100		Tail Unit	
128.	Vertical Rudder 003.046.000	(TEST 71ME)	
120	Aileron 260.020.062	Tail Unit	
129.	Alleron 200:020.002	(TEST 71ME)	
130	Towed Reel	Tail Unit	
150.		(TEST 71ME)	
131	Tail Unit 2517.020.0000	Tail Unit	
101.		(TEST 71ME)	
132.	Starting Gear 2517.038.0000-		
	01	TEST7ME	Controllerate of
133.	Gyroscope W018940	Control Section	Naval
	Drepulsion Mater Assembly	A244S	Armament
134.	Propulsion Motor Assembly WTP324400120	A244S	Inspection
125		A244S	(West)
136.	Gyroscope W002198 Shipping Ring W002895	A244S	Naval
	Pressometer A&B with Cable		Dockyard,
137.	W000801	A2113	Gun Gate,
	Propulsion Motor MOD-0	A244S	Mumbai
138.	W018367C		400023
139.	Rudder Fins W000195	A244S	Tele: 022-
140.	Elevator Fins W000199	A244S	22751977
141.	Inclinometer N215000200A	A244S	Email:
142.	Stabilizing Ring W000191	A244S	wnccnaimb@na
143.	Steering Control W000474	A244S	vy.gov.in
144.	A244S MOD-0 Torpedo	A244S	
177.	Warhead		
		Explosives	
145.	Detonator (DM12) M1297	(SUT Legacy &	
		LTE)	
146.	Warhead 279.997 518		
147.	TONA	SSK	
		Submarines	
	Warhead	RVV-AE	
149.	Warhead	R-73E	

114			
<u>Ser</u>	Item Description	<u>End Use</u>	<u>Point of</u> <u>Contact</u>
150.	Charging and Stop Valve - 2517.046.0000-01	SBC Compartment of TEST-71ME	
151.	Starting Device - 2517.038.0000	Afterbody of TEST-71ME	
153.	Cut Off Valve 2526.014.000 Cut Off Device 2526.013.050	-	
155.	Electronic Pack 2517-040-0300 Pressure Pick up	CET-65E	
157.	Forward Propeller 260.021.010 After Propeller 260.021.011	Afterbody (CET 65E)	
158. 159.	Floater Cover 243.03.0502KEMFloaterSafety243.03.049ME	53-65KE Torpedo preparation Items	Controllerate of Naval Armament Inspection
160.	Radar Homing Head Y554-5	Club	(East) PO: Naval
161.	On Board Computer Complex (ОВСС) БЦВМЗАРЯ-43	Club	Armament Depot,
162.	Auto Pilot Control Unit ДВ2.564.012		Vishakhapatna m 530009
163.	Altitude Prediction Gyro <u>AB2.562.096</u>	P-Series	Tele: 0891- 2571143
164. 165.	Rate Gyro Radio Altimeter FY1.000.040 05		Email: enccnaiv@navy .gov.in
166.	Self-Contained Noise Maker Battery (2556.010.090)		
167.	(2556.010.040)	TE2-02/ MG- 74	
168.	One Shot Battery Compartment with Squib and Accessories		
	Squibs	Explosives	
170.	Contact Fuze (Device À-346)	(TE2-02)	
171.	(ИПВЕ.563511.011)	02)	
	Rubber Components	MR (TE2-02)	
173.	Towed Reel	TE2-02	

		-	
<u>Ser</u>	Item Description	End Use	Point of
174	Tarrada Daal		<u>Contact</u>
1/4.	Torpedo Reel	TE2-02	
175.	Shield/ Cover Assembly	Article 2556/ TE2-02	
176.	Float (T.004.00.00)	MG 74 ME MOD 1 Decoy Float	
177.	Tail Section (2556.020.000)	TE2-02	
	3M54E W/H	3M54E	
179.	3M54TE W/H	3M54TE	
180.	Propulsion System Squib (15X341/ PP 15X341)	Kashasia	
181.	Rocket Motor Igniter (9X253)	Kashmir	
182.	TGPSU (Turbo Generator Power Supply Unit)		Controllerate of
			Naval
183.	Propulsion System Squib (9X456)	Shtil	Armament
184.	RM Igniter (9X522)	Shen	Inspection
185.	Safety & Actuating Mechanism (9E129/ PIM 9E129)	Shtil	(East) PO: Naval
186.	Rocket Motor		Armament
187.	Torpedo Ignition Ctgs(Ind)	53-65KE	Depot,
188.	Marker Smoke White A/S MK N3	Signalling	Vishakhapatna
189.	Warhead (9H318)		m 530009
190.	RGB-60 with Fuze YDB-60 or equivalent	Shtil	Tele: 0891- 2571143
191.	SRGM Primer	76/62 SRGM	Email:
192.	DA Fuze PDM9030A1	76/62 SRGM	enccnaiv@navy
193.	Steel Ctge Case for SRGM	76/62 SRGM	<u>.gov.in</u>
194.	Advanced Mini Depth Charge with ESAD Fuze	MDC	
195.	Float Smoke & Flame	FS&F	
196.	Modification of MRCR Kavach Rocket	Kavach	
197.	Limpet Mine 7kgs and 15kgs	Mines	
198.	Gas Generator Section-IV	Kashmir	
199.	SRGG (FTT-95)	URAN & KH- 35E	
200.	Marker Man Over Board	MMOB	

_			
<u>Ser</u>	Item Description	<u>End Use</u>	Point of
201	Torpedo Ignition Cartridge	Torpedo Firing	<u>Contact</u>
	Sustainer Igniter 5B-43	Igniter	
	Booster Igniter 5B-94	Igniter	
	TCDSU (Turbo Conorator Dowor		
204.	Supply Unit)	Shtil	
205	PBG Mine Mk-1 Warhead Filling	PBGM	
	Booster CE Pallet for PBGM	PBGM	
	Depth Charge Mk-II MOD 3 with		
207.	Packages		
208.	Torpedo Impulse Cartridge	TIC	
209.	Primer GUV-7	76.2mm	
210.	Propellant 6/7 for AK-630	AK-630	
210	Ammunition		Controllerate of
211.	Propellant S-760 for 76/62	SRGM	Naval
212	SRGM		Armament
	Propellant for RGB-60	RGB-60	Inspection
	Propellant for MRCR	Kavach	(East)
214.	Propellant for LRCR	100	PO: Naval
215.	Propellant for 100mm Ammunition	100 mm	Armament
	Low Smoke EDB Propellant for		Depot,
216.	TIC		Vishakhapatna
	Pyro (India) Parachute RKT		m 530009
217.	Flare Red (PT-II)		Tele: 0891-
210	Pyro (India) Hand Flare Red		2571143
218.	(PT-III)		Email:
219.	Cartridge Submerged Ejector	Signal	enccnaiv@navy
219.	Signal (CSES) Red	_	.gov.in
220.	Pyro Cartg UDP (1-3)		
	Pyro Cartg UDP (3-3)		
	Pyro Cartridge Filled PP9 PC/M		
223.	Kavach Launcher MOD II	Kavach	
224.	Scoop Arming Wire for A244S	A244S Air	
	Torpedo	Launch	
	DM16 for SUT Torpedo	SUT Exploder	
	Thermal Battery	Barak	
227.	Alternate source for Battery	HWT & LWT	

Ser	Item Description	End Use	Point of
			Contact
าาด	EED Cault	Ex torpedo	
220.	EED Squib	A244S	
229.	Battery Section Shell	SUT	
230.	Cox Gun Ammunition (Blank)	Cox Gun	
231.	Electrically Operated Cartridge	Water Jet Disruptor	Controllerate of Naval
232.	PT1047 Needle Cartridge	Needle Disruptor	Armament (South)
233.	Cartridge Injector L3A1 NE	Hot Rod Disruptor	PO: Naval Armament
234.	Electrically Driven Impulse Cartridge 12.7mm	Disruptor RE 70M3 Plus	Depot Alwaye 683563
235.	Electric Cartridge 12.7mm	ABL 1000 Disruptor	Tele: 0484- 2838384
236.	Electrically Initiated Cartridge - LMDE Practice	LMDE (Limpet Mine Disposal Equipment)	Email: sncnaia@navy. gov.in
237.	Electrically Initiated Cartridge - LMDE Service	LMDE (Limpet Mine Disposal Equipment)	
238.	Ship-Borne Close-in Weapon Systems		
239.	Anti-Submarine Rocket Launchers		Directorate of
240.	Ship-Borne Medium Range Gun		Weapons
241.	Torpedo Tube Launcher for Light Weight Torpedoes	Miscellaneous	Equipment NHQ/ MoD,
242.	Ship-Borne Sonars for Large Ships		6 th Floor, `D' Block,
243.	Hull Mounted Submarine Sonar		, Defence Offices
244.	Expandable Aerial Targets		Complex,
245.	Anti Torpedo Decoy		Africa Avenue,
246.	Ship-Borne Surface Surveillance Radar		New Delhi -
247.	Portable Diver Detection Sonar		110023
248.	Composite Sonar Dome for Ships		<u>Tel:011-</u> 26771356
249.	Upgraded 76 mm SRGM		

<u>Ser</u>	Item Description	End Use	Point of
<u> </u>	<u>item beschption</u>		Contact
250.	AWS Fire Control System for Ships		Email: <u>dwe@navy.gov</u>
251.	Heavy-weight Torpedo Launcher for Ships		<u>.in</u>
252.	Multifunction Surveillance & Threat Alert Radar for Ships	Miscellaneous	
253.	Ship based Medium Range Surface to Air Missile		
254.	Loitering Munitions		
255.	Anti-Submarine Warfare Sonar for shallow water		
256.	Ship Based Vertical Launched Short Range Surface to Air Missile System		Directorate of Weapons
257.	Supersonic Weapon Imitating Flying Target		Equipment NHQ/ MoD, 6 th Floor, 'D' Block, Defence Offices Complex, Africa Avenue, New Delhi - 110023 <u>Tel:011- 26771356</u> Email:
258.	Mine Counter Measures (Autonomous Surface Vessel)		
259.	Ship-Borne Gun Direction Fire Control Radar		
260.	Ship-Borne Electro Optic System for Weapons	Missellanoous	
261.	Ship-Borne Electro System Stabilised Optronic Pedestal (SOP)	Miscellaneous	
262.	Ship based Expendable Aerial Target		
263.	Expendable Underwater Target for Naval Applications		<u>dwe@navy.gov</u> <u>.in</u>
264.	Automatic Missile Detection Radar for Ships		

Appendix `E' (Refers to Para 5 Chap 8)

INDIGENISATION REQUIREMENT OF NAVAL AVIATION STORES/ EQUIPMENT

<u>Ser</u>	Description	Part Number
1.	Data Acquisition and Processing Unit- MiG 29 K	BSOI-1K
2.	Control and Monitoring Unit- MiG 29 K	BARK-42
3.	Optical Mechanical Unit- MiG 29 K	BOM
4.	Multi-Functional Display-KM 31	MFI-10-5I
5.	Multi-Functional Display- MiG 29 K	MFI-10-7-01
6.	Air Data Computer- MiG 29 K	SVS-2TS-2 SER.3
7.	Video Data Processor- MiG 29 K	VDP-29
8.	Limiting Signal Computer- MiG 29 K	VSO-29
9.	Mission Computer- MiG 29 K	BTSVM-486-2K-01
10.	Plunger Pump- MiG 29 K	NP-115M
11.	Integral Drive Vane- MiG 29 K	PGL-21K
12.	Tyre Assy MLG-MH 60R	01-118-5543
13.	Tyre Assy NLG – MH 60R	01-480-5161
14.	Main Wheel Tyre – P8I	APS06030
15.	Nose Wheel Tyre – P8I	275K22-1
16.	Tyre Main Wheel – KM 31	620X180M 3A
17.	Tyre Nose Wheel - KM 31	480X200M 14A
18.	Aircraft Main Battery – MH 60R	M81757/14-1
19.	Aircraft Tow Bar – MH 60R	1479AS400-1
20.	Axle Jack 5 Ton – MH 60R	53D22020
21.	Airfield Towing and Steering Arm – KM 31	503.9901.0000.000
22.	Small Sized Avionics Clock – MiG 29K	781-2-E
23.	EO/IR Purging Kit – P 8I	42424-02

<u>Ser</u>	Description	<u>Part Number</u>
24.	Pressure Seal - MiG 29K	5.47.0604.0190.00

120

Point of Contact:-

Directorate of Air Projects and Plans NHQ/ MoD, 5th Floor, 'D' Block, Defence Offices Complex, Africa Avenue, New Delhi -110023 Telephone: 011-26771521 Email: dapp@navy.gov.in

Appendix 'F' (Refers to Para 33 Chap 9)

ELECTRICAL/ ELECTRONIC PROJECTS UNDER PROCESS/ INDIGENISATION REQUIREMENT

Ser	Description	<u>Status</u>	OEM/Vendor
			M/s Narhari Engg Works
		Completed	M/s Poly Phase Motors
1.	Motors of Various Ratings	(Vendor Base Expansion in	M/s Ketaki Engg Pvt. Ltd
		progress)	M/s Laxmi Hydraulics Pvt Ltd,
			M/s KEC M/s Megha Rototech
		Completed	M/s L&T M/s Marine Electrical
2.	Switchboard with APMS	(Vendor Base Expansion in	M/s Precision Power
		progress)	Products M/s Symtronics
		Completed	M/s Precision Power Products
3.	ATS (Auto Transfer Switch)	(Vendor Base Expansion in	-
	, ,	progress)	M/s Sipani Defence, Bengaluru
	Hole Starting Destifier	Completed	M/s Static Transformers
4.	Helo Starting Rectifier (HSR)	(Vendor Base Expansion in	M/s Precision Power Products
		progress)	M/s L&T
-	LED Light Fitting	Completed (Vendor Base	M/s Ray Enterprises M/s Mcgeoch Marine
5.	Including Magazine Light Fitting	Expansion in progress)	M/s Zeal Tech M/s Sipani Energy Ltd.

		122	
<u>Ser</u>	Description	<u>Status</u>	OEM/Vendor
6.	IBS (Integrated Bridge System)	Vendor Base Expansion is envisaged	M/s Marine Electricals (Participation of more vendors is being encouraged).
7.	Auto Plotter	Vendor Base Expansion is envisaged.	M/s Elcome Marine
Ind	igenisation in Progress/	<u> Planned</u>	
8.	HVLAS	-	M/s AMA M/s Elcome Marine Integrated Systems
9.	EM LOG Transducer	-	M/s CDAC
10.	Development of Indigenous Echo Sounder for Submarines	-	M/s Keltron
11.	Fiber Optic Gyro (FOG) for Ship Application	-	M/s RCI
12.	SSPA for AMDR Radars	-	TDF Route through DRDO (M/s AIDIN Technologies)
13.	Drone Based ELINT System	-	M/s BEL
14.	Indigenous Integrated Mast (IIM)	-	M/s ATLA, Japan & M/s BEL
15.	RF Over Fiber Based CAW with Conformal Antenna	-	M/s BEL & M/s CDAC
16.	Single Chip/ Single Board Radio	-	M/s CDAC
17.	Development of Varuna Lite EW System	-	M/s BEL
18.	Digital Beam-Forming Based Satellite TV (DB2ST)	-	M/s Rangsons
19.	Helo Deck Communication System (HDCS)	-	M/s L&T
20.	RF Components for EW systems	-	Under TDF scheme through DRDO

C	Description	Chatas	
<u>Ser</u>		<u>Status</u>	<u>OEM/Vendor</u>
21.	Li-Ion Based AELs and Lead Lamps	-	M/s Zeal Tech
22.	BLI Based 18-40 GHz ESM Sub Unit	-	M/s BEL
23.	SATCOM Terminals for Submarines (Ku Band)	-	M/s ECIL M/s BEL
24.	Rukmani (C and Ku Band) for Ship Application	-	M/s BEL
25.	Integrated Communication and Surveillance System for Submarines	-	DRDO Project. Being steered by NPOL, Kochi.
26.	Modular ESM Receivers	-	M/s BEL
27.	TR Modules for EW Systems	-	M/s BEL
28.	Software Defined Radio	-	M/s BEL
29.	Inertial Navigation System for Ship Applications	-	M/s BEL
30.	EW Systems -Shipborne	-	M/s BEL
31.	Shipborne High Accuracy ELINT System 0.17 to 40MHz	-	M/s BEL
32.	SDR for Combat Ships (SDR NC)	-	M/s BEL
33.	Battery Monitoring System for Submarines	-	M/s Precision Power Products
34.	Alternators for Ships (up to 1.5 MW)	-	M/s Kirloskar Electric Co Ltd M/s Cummings Generator Technology M/s Elmot Alternators Pvt Ltd M/s TDPS M/s BHEL

		124	
<u>Ser</u>	Description	<u>Status</u>	OEM/Vendor
35.	DC Insulation Measuring Instrument for EKM Submarines	-	M/s Precision Power Products
36.	Shipborne Main Broadcast System	-	M/s Elcome Integrated System, Mumbai M/s Linia Engineering Services M/s Phi Audiocom
37.	Data Network for Ships	-	M/s BEL
38.	Ship Borne 1KW High Frequency Trans-Receiver	-	M/s Avantel
39.	IFF MKXII-S	-	M/s BEL
40.	Intercom System for Ships and Submarines	-	M/s Linia Engineering Services
41.	Link II MOD III for Ships and Submarines	-	M/s BEL
42.	Radar Finger Print System for ELINT Application	-	M/s BEL
43.	Deep Sea Side Towing Winch (DS4TW)	-	M/s L&T
44.	COMINT (Ship Based)	-	M/s BEL
45.	Remote Embedded System Support (Remote Control/ Monitoring Panels for Electrical/Machinery) for Naval Ships	-	M/s Info Allies M/s Yeoman Marine Services Pvt Ltd.
46.	High Data Rate VLF-HF Receivers for Ships	-	M/s BEL(Panchkula)
47.	IU for AWOS-MNS for VKD	-	M/s Keltron
48.	Li-Ion Battery for Submarine Application	-	-
49.	LCU (AMDR 2D)	-	-
50.	Rotary Joint (AMDR 2D)	-	-
51.	TWT (AMDR 2D)	-	-
52.	BSI Module (RLG Sigma- 40)	-	-

Ser	Description	Status	OEM/Vendor
53.	SPC (Fregate M2EM)	-	-
54.	Mobile Cable Handling Assembly (MoCHA)	-	-
55.	LED Based Taxy, Landing and Navigation Lights	-	-
56.	Optical Landing System	-	M/s Celeritas
57.	Camera Based Tracking System	-	M/s Celeritas
58.	Deck Lighting System for Air Craft Carrier (SATURN)	-	M/s Elcome
59.	Indigenous Development of KTSOD Data Link	-	M/s Whirly Bird
60.	Indigenous Development of Buran Data Link	-	M/s Whirly Bird

125

Point of Contact:-

Directorate of Electrical Engineering NHQ/ MoD, D II Wing, Sena Bhawan, New Delhi 110 011 Telephone: 011-21411705, 23010946 Email: dee@navy.gov.in

PAGE LEFT BLANK INTENTIONALLY

<u>Appendix `G'</u> (Refers to Para 2 Chap 10)

PROJECTS UNDER MAKE 'CATEGORY

<u>Ser</u>	Project
1.	Upper Air Sounding System
2.	Digital Beam Forming Based Satellite TV
3.	Three Phase Inverters
4.	Expendable Under Water Target
5.	Effectors for Anti-torpedo Countermeasure System
6.	Proximity and DA Fuze for 76/62 SRGM with universal capability for 76-127 mm Ammunition
7.	Limpet Mines (7kg and 15 kg)
8.	Marine Grade Aluminum Alloy Plate
9.	Marine Sewage Treatment Plant
10.	High Endurance Autonomous Underwater Vehicle (HEAUV)
11.	Mine Counter Measure – Autonomous Surface Vessel (MCM- ASV)
12.	5 m3/h Oily Water Separator (OWS) System
13.	Integrated Stand by Instrument System
14.	Buoyancy Glider for enhancing underwater domain awareness
15.	Supersonic Weapon Imitating Flying Target
16.	Glide SSM
17.	Light Weight High Speed Marine Engine for Naval Boats
18.	Ship Based Rukmani SATCOM Terminals
19.	Turbocharger for P-75
20.	127 mm Guided Projectile
21.	30 mm Ammunition for Naval Surface Gun
22.	Next Generation Helo Harnessing and Traversing System (ASIST)
23.	Semi-Submersible Autonomous Vessel for Intelligence, Operations and Reconnaissance (SAVIOR)-ASW
24.	Compact Autonomous Surface Craft All Domain Effects - Anti Submarine Warfare (CASCADE-ASW)
25.	Shore based Guided Rockets (SB-GR) System
26.	Quantum Encryption Modules for Secure Satellite Communication

<u>Ser</u>	Project
27.	16 Core Advanced Hybrid Armoured Fiber Optic Undersea Range Cable
28.	Naval Aerial Robotic System
29.	Emergency De-Ballasting System for SSKs/ P-75
30.	76/ 62 SRGM High Explosive (HE) and High Explosive Pre- Formed Fragmented (HEPFF) Ammunition'
31.	Medium Speed Marine Diesel Engine (6 MW – 9 MW)
32.	URAN SSM Fire Control System
33.	Electro Optical IR Search and Track System (EOIRST)
34.	127 mm Medium Caliber Gun
35.	30 mm Naval Surface Gun
36.	76 mm Super Rapid Gun Mount
37.	12 MW Electric Propulsion for Ships
38.	4MW Marine Gas Turbine based Electric Power Generator
39.	Extra Large Autonomous Underwater Vehicle (XLAUV)
40.	Ship Borne Laser Weapon System (30KW)
41.	Lightning Detection System
42.	Infantry Weapon Training Simulator (IWTS)
43.	Multipurpose Forklift Truck
44.	Foldable Fibre Glass Mat
45.	APTORS (Automatic Pilot Landing and Take Off Recording System)
46.	Aircraft Recovery Dollies
47.	Aircraft Lifting Slings
48.	Transition Platform with Trailer
49.	High Altitude Pseudo Satellite
50.	Airborne Multi-constellation GNNS Receiver and Converter
51.	R-73
52.	HSLD MK II (Rampage)

Directorate of Indigenisation NHQ/ MoD, W 402, 4th Floor, West Wing, Nau Sena Bhawan, Delhi Cantt, New Delhi 110010 Telephone: 011-28702779, Fax: 011-28702773 Email ID: doi-navy@nic.in

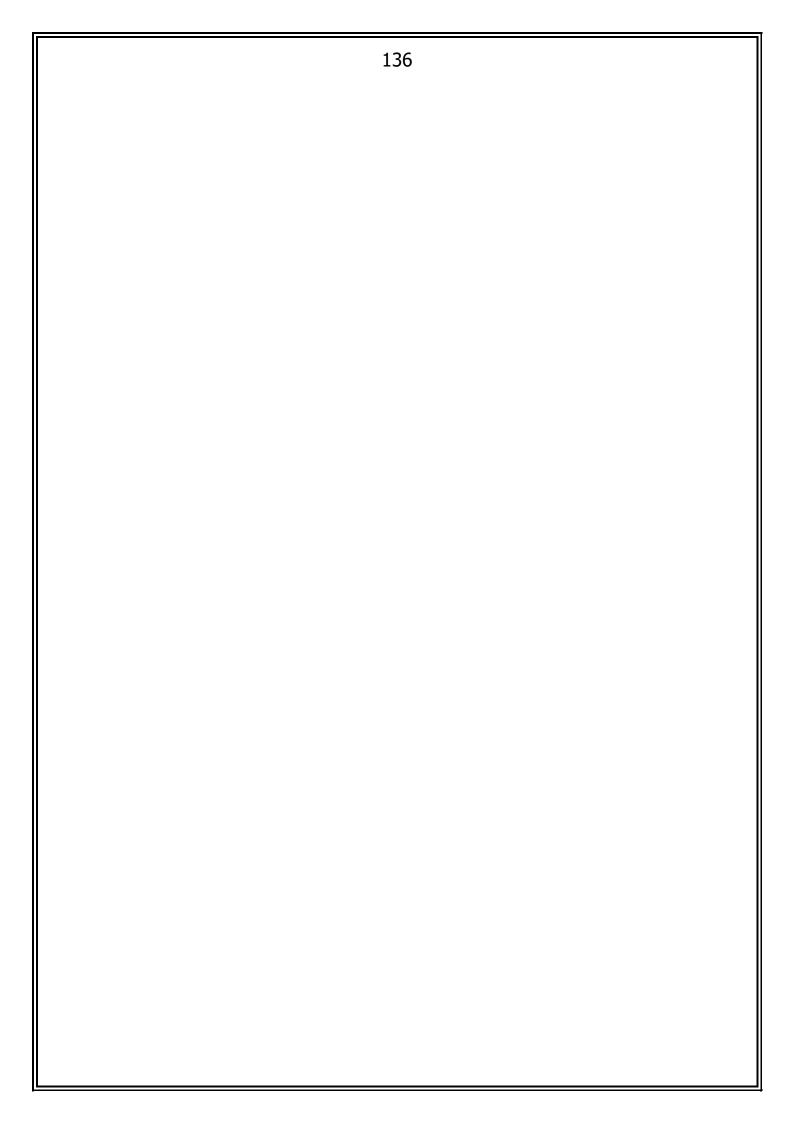
<u>Appendix `H'</u> (Refers to Para 2 Chap 10)

PROJECTS UNDER INNOVATIONS FOR DEFENCE EXCELLENCE (iDEX) SCHEME

<u>Ser</u>	<u>Project</u>
1.	Development of 4G/LTE based Tactical LAN
2.	Secure Hardware Based Offline Encryptor Device for Graded Security
3.	Unmanned Surface & Underwater Vehicle
4.	AI based Logistics and Supply Chain Management
5.	Development of Advanced Technology based De-salination Plant and Bilge OWS System
6.	Stabilised C & KU Band Terminal Antennae
7.	Low cost Autonomous Underwater Swarms
8.	Machinery Health Monitoring System
9.	Enhancing UDA by the use of AI/ML or other Novel Techniques
10.	Development of a Private 5G network for Machine to Machine Communication
11.	Development of Inertial Energy Storage System for Naval Applications (IESS)
12.	Non-Lethal Devices for Stopping Vessels at Sea
13.	Artificial Intelligence and Augmented Reality Based Virtual Assistant
14.	Low Latency Multicast Accelerated File Transfer and Video Streaming over existing SATCOM Links to Remote Platforms/ Sites
15.	Below the Noise Floor Modems in S/ C/ Ku band (1 Kbps to 20 Mbps) to Operate within existing out/ in Routes on S, C and Ku Band.
16.	Portable (Handheld / Manpack) Ku Band Terminal for <i>IN</i> SATCOM Network.
17.	Development of On-board Processing and Beam Switching Payload for 'Ku' and 'Ka' Band GEO Satellite for High Throughput Maritime Requirements.
18.	Beam steering Ku band SATCOM Antenna over <i>IN</i> SATCOM Network for MR aircraft.
19.	Compact, Lightweight, Multiband SATCOM (UHF/ S /C/ Ku / Ka) SDR for Ships, Submarines and Aircraft.

<u>Ser</u>	Project
20.	Customised Remote Modem with Ruggedised Field Programmable Gate Array (FPGA) based Platform with Inbuilt Post Quantum Encryption for VSAT Baseband.
21.	Development of an Indigenous Security Information and Event Management (SIEM) Solution based on Open-Source Framework
22.	Development of an Advanced Open-Source Framework Sanitisation Tool Facilitating Secure Transfer of Data between Multiple Air-gapped Networks
23.	AI based Smart Ship Operations
24.	Replenishment at Sea (RAS) / Fueling at Sea (FAS)
25.	
26.	
27.	Undersea Communication
28.	Automated Celestial Navigation System
29.	
30.	AI based Condition-Based Predictive Maintenance (CBPM)
	Online Power Quality Module (PQM)
32.	Forecasting of Defect/Prediction of Useful Life for Critica Machinery
33.	Hydraulic Dock Block
34.	AI Based Interactive Knowledge Management Module
35.	Development of Ramjet Engine for Fixed Wing Flying Objects
36.	Close Loop Waste Heat Recovery System
37.	Fabrication, Integration and Testing of one Prototype AUV as per 'Jalkapi' Design by Indian Navy
38.	Advancing Under water Object Identification using Aeria Hyperspectral Imaging and AI
39.	Perpetual Power Plant 1.28 MW (Technology Demonstration only)
40.	Smart Loitering Munition
41.	Axial flux BLDC Motors
42.	Integrated Maritime Domain Awareness Platform for Detecting Anomalies using AI/ML
43.	Monolithic Telescope-based Imaging System
44.	Disposal of Expired Ammunitions & Bombs into Sea
45.	Heavy Lift Tethered Aerial Vehicles (HLTAV)
46.	Water Mist Fixed Firefighting System

<u>Ser</u>	Project
47.	Portable, Modular Steel – Box Earth covered Magazine for High Explosive with Blast Door
48.	Optic Fiber Based Fire and Temperature Detection System for Sea going Platforms
49.	Gimbal - Less Seeker
50.	Unmanned Seaplane Zebra
51.	Solid Fuel based Low Temperature Gas Generator
52.	Skydock Autonomous Launch, Recovery and Charging of Drones
53.	Long Range Powered Precision Guidance Munition
54.	Wearable Large UAV for MARCOS
	Electro Optical IR Search and Tracking
56.	Indigenously Design Developed Aircraft/ Helicopter Tow Bar Less Battery-Operated Tow Tug (Remote Operated)
57.	FOD Removal Robot for Aircraft Carrier
58.	High Altitude Pseudo-Satellite Mk I (HAPS Mk I)
59.	Tethered Underwater Communication Buoy
60.	Mission Planning, Decision Support and Debrief System for Submarine Operation Planning Organisations
61.	Virtual Reality based Submarine Escape Training Simulator
62.	ALMERIO Environmentally-Shielded Modular Portable Proof/Practice Chamber for Small Arms/Ammunition (up to 12.7mm) and 100 m Length (can be extended up to 300 m) ESMPPC-SAA
63.	Total Blast Containment (Zero Arc and Reduced Arc) Vaults with Unit Risk (Day Carry Boxes)
64.	Optical Landing Assistance System for Aircraft Carrier
65.	Camera Based Optical Landing System
	Damage Control System
67.	Automation for Loading & Unloading of Signal Flares and Associated Procedures
68.	Torpedo Leak Testing
69.	30 MM Ammunition Disposal
70.	Smart ELINT Exploitation and Dissemination System (SEEDS)
71.	Nucleonix NX_CBRN1_SC Standoff Chemical and CBRN Solution
72.	Aqua Airx - Autonomous Multi Medium Amphibious Drone
73.	Automated Celestial Navigation System
74.	Autonomous Gunnery & Radar Alignment of Warships


 79. (FFDC) System 80. Damage Control Shore System 81. Electric Davit - Obliviation of Manual Hoisting 82. Low-cost Indigenous Pyrotechnic Systems for Naval Applications 83. Pass Analysis Solutions for Defence 84. Moisture Wicking Hydrophobic Weapon Cover 85. Underwater Photography Noise Cancellation using Artificia Intelligence and Deep Learning 86. Fuel Cells 87. Disposable Light Weight Drone (DLD) 88. Underwater Remotely Operated Vehicle (UWROV) fo Underwater Inspection and Repairs 89. Hardware Enforced Solution against Advanced, Persistent and Coordinated Attacks to prevent Kernel Mode Malware 90. Submarine Voyage Data Recorder (SM-VDR) 91. Development of Submarine Launched Expendable Bathythermograph (SSLXBT) 92. AI Based FOD (Foreign Object Debris) Detection and Classification System for FOD Management at <i>IV</i> Air Station 93. Beamforming ASIC based Radar with Massive MIMO technology 94. AI based Collision Avoidance for Unmanned Vessels 95. AI enabled Automatic Floatation Device Dispersal Drone 96. Development of Hydro Acoustic ASW Vector Sensors which car be used with Drones 97. Converting Oxygen Torpedoes to UW Targets for ASW Training and Practice Torpedo Firings 98. Blue Green Lasers for Underwater Applications 99. Reusable Off board Missile Decoy Microwave Obscurant Clouds (MOC) which are Programmable based on the Threat Portable RCS Measuring Device that is Capable of Independen 101. Operation and Deployable from Multiple Platforms (Ship, Boat 		132	
 77. AFC for Aircraft Carrier (Deck Lighting System) 78. AI Based Contactless Motion Amplification and Diagnostic Tool 79. Artificial Intelligence Based Fire Fighting and Damage Control (FFDC) System 80. Damage Control Shore System 81. Electric Davit - Obliviation of Manual Hoisting 82. Low-cost Indigenous Pyrotechnic Systems for Naval Applications 83. Pass Analysis Solutions for Defence 84. Moisture Wicking Hydrophobic Weapon Cover 85. Underwater Photography Noise Cancellation using Artificia Intelligence and Deep Learning 86. Axial Flux Motor based Lightweight Electric OBM with Optiona Fuel Cells 87. Disposable Light Weight Drone (DLD) 88. Underwater Remotely Operated Vehicle (UWROV) fo Underwater Inspection and Repairs 89. Hardware Enforced Solution against Advanced, Persistent and Coordinated Attacks to prevent Kernel Mode Malware 90. Submarine Voyage Data Recorder (SM-VDR) 91. Development of Submarine Launched Expendable Bathythermograph (SSLXBT) 92. AI Based FOD (Foreign Object Debris) Detection and Classification System for FOD Management at <i>IN</i> Air Station 93. Beamforming ASIC based Radar with Massive MIMO technology 94. AI based Collision Avoidance for Unmanned Vessels 95. AI enabled Automatic Floatation Device Dispersal Drone 96. Development of Hydro Acoustic ASW Vector Sensors which car be used with Drones 97. converting Oxygen Torpedoes to UW Targets for ASW Training and Practice Torpedo Firings 98. Blue Green Lasers for Underwater Applications 99. Reusable Off board Missile Decoy Microwave Obscurant Clouds (MOC) which are Programmable based on the Threat Portable RCS Measuring Device that is Capable of Independen 101. Operation and Deployable from Multiple Platforms (Ship, Boat 	<u>Ser</u>	<u>Project</u>	
 78. AI Based Contactless Motion Amplification and Diagnostic Tool Artificial Intelligence Based Fire Fighting and Damage Control (FFDC) System 80. Damage Control Shore System 81. Electric Davit - Oblivation of Manual Hoisting 82. Low-cost Indigenous Pyrotechnic Systems for Naval Applications 83. Pass Analysis Solutions for Defence 84. Moisture Wicking Hydrophobic Weapon Cover 85. Underwater Photography Noise Cancellation using Artificia Intelligence and Deep Learning 86. Axial Flux Motor based Lightweight Electric OBM with Optiona Fuel Cells 87. Disposable Light Weight Drone (DLD) 88. Underwater Remotely Operated Vehicle (UWROV) fo Underwater Inspection and Repairs 89. Coordinated Attacks to prevent Kernel Mode Malware 90. Submarine Voyage Data Recorder (SM-VDR) 91. Development of Submarine Launched Expendable Bathythermograph (SSLXBT) 92. AI Based FOD (Foreign Object Debris) Detection and Classification System for FOD Management at <i>IN</i> Air Station 93. Beamforming ASIC based Radar with Massive MIMO technology 94. AI based Collision Avoidance for Unmanned Vessels 95. AI enabled Automatic Floatation Device Dispersal Drone 96. Development of Hydro Acoustic ASW Vector Sensors which car be used with Drones 97. Converting Oxygen Torpedoes to UW Targets for ASW Training and Practice Torpedo Firings 98. Blue Green Lasers for Underwater Applications 99. Reusable Off board Missile Decoy Microwave Obscurant Clouds (MOC) which are Programmable based on the Threat Portable RCS Measuring Device that is Capable of Independen 100 peration and Deployable from Multiple Platforms (Ship, Boat 	76.	KTSOD Data Link System-Ship End Equipment	
 Artificial Intelligence Based Fire Fighting and Damage Control (FFDC) System Damage Control Shore System Electric Davit - Obliviation of Manual Hoisting Low-cost Indigenous Pyrotechnic Systems for Naval Applications Pass Analysis Solutions for Defence Moisture Wicking Hydrophobic Weapon Cover Underwater Photography Noise Cancellation using Artificia Intelligence and Deep Learning Axial Flux Motor based Lightweight Electric OBM with Optiona Fuel Cells Underwater Remotely Operated Vehicle (UWROV) fo Underwater Inspection and Repairs Hardware Enforced Solution against Advanced, Persistent and Coordinated Attacks to prevent Kernel Mode Malware Submarine Voyage Data Recorder (SM-VDR) Development of Submarine Launched Expendable Bathythermograph (SSLXBT) AI Based FOD (Foreign Object Debris) Detection and Classification System for FOD Management at <i>IN</i> Air Station Beamforming ASIC based Radar with Massive MIMO technology AI enabled Automatic Floatation Device Dispersal Drone Development of Hydro Acoustic ASW Vector Sensors which car be used with Drones Converting Oxygen Torpedoes to UW Targets for ASW Training and Practice Torpedo Firings Blue Green Lasers for Underwater Applications Reusable Off board Missile Decoy Microwave Obscurant Clouds (MOC) which are Programmable based on the Threat Portable RCS Measuring Device that is Capable of Independen Operation and Deployable from Multiple Platforms (Ship, Boat 	77.	AFC for Aircraft Carrier (Deck Lighting System)	
 (FFDC) System Damage Control Shore System Electric Davit - Obliviation of Manual Hoisting Low-cost Indigenous Pyrotechnic Systems for Naval Applications Pass Analysis Solutions for Defence Moisture Wicking Hydrophobic Weapon Cover Underwater Photography Noise Cancellation using Artificia Intelligence and Deep Learning Axial Flux Motor based Lightweight Electric OBM with Optiona Fuel Cells Disposable Light Weight Drone (DLD) Underwater Remotely Operated Vehicle (UWROV) fo Underwater Inspection and Repairs Hardware Enforced Solution against Advanced, Persistent and Coordinated Attacks to prevent Kernel Mode Malware Submarine Voyage Data Recorder (SM-VDR) Development of Submarine Launched Expendable Bathythermograph (SSLXBT) AI Based FOD (Foreign Object Debris) Detection and Classification System for FOD Management at <i>IV</i> Air Station Beamforming ASIC based Radar with Massive MIMO technology AI abased Collision Avoidance for Unmanned Vessels AI enabled Automatic Floatation Device Dispersal Drone Development of Hydro Acoustic ASW Vector Sensors which car be used with Drones Converting Oxygen Torpedoes to UW Targets for ASW Training and Practice Torpedo Firings Blue Green Lasers for Underwater Applications Reusable Off board Missile Decoy Microwave Obscurant Clouds (MOC) which are Programmable based on the Threat Portable RCS Measuring Device that is Capable of Independen Operation and Deployable from Multiple Platforms (Ship, Boat 	78.	AI Based Contactless Motion Amplification and Diagnostic Tool	
 81. Electric Davit - Obliviation of Manual Hoisting 82. Low-cost Indigenous Pyrotechnic Systems for Naval Applications 83. Pass Analysis Solutions for Defence 84. Moisture Wicking Hydrophobic Weapon Cover 85. Underwater Photography Noise Cancellation using Artificia Intelligence and Deep Learning 86. Axial Flux Motor based Lightweight Electric OBM with Optiona Fuel Cells 87. Disposable Light Weight Drone (DLD) 88. Underwater Remotely Operated Vehicle (UWROV) fo Underwater Inspection and Repairs 89. Coordinated Attacks to prevent Kernel Mode Malware 90. Submarine Voyage Data Recorder (SM-VDR) 91. Development of Submarine Launched Expendable Bathythermograph (SSLXBT) 92. AI Based FOD (Foreign Object Debris) Detection and Classification System for FOD Management at <i>IN</i> Air Station 93. Beamforming ASIC based Radar with Massive MIMO technology 94. AI based Collision Avoidance for Unmanned Vessels 95. AI enabled Automatic Floatation Device Dispersal Drone 96. Development of Hydro Acoustic ASW Vector Sensors which car be used with Drones 97. Converting Oxygen Torpedoes to UW Targets for ASW Training and Practice Torpedo Firings 98. Blue Green Lasers for Underwater Applications 99. Reusable Off board Missile Decoy Microwave Obscurant Clouds (MOC) which are Programmable based on the Threat Portable RCS Measuring Device that is Capable of Independen 101. Operation and Deployable from Multiple Platforms (Ship, Boat 	79.	Artificial Intelligence Based Fire Fighting and Damage Control	
 82. Low-cost Indigenous Pyrotechnic Systems for Naval Applications 83. Pass Analysis Solutions for Defence 84. Moisture Wicking Hydrophobic Weapon Cover 85. Underwater Photography Noise Cancellation using Artificia Intelligence and Deep Learning 86. Axial Flux Motor based Lightweight Electric OBM with Optiona Fuel Cells 87. Disposable Light Weight Drone (DLD) 88. Underwater Remotely Operated Vehicle (UWROV) fo Underwater Inspection and Repairs 89. Hardware Enforced Solution against Advanced, Persistent and Coordinated Attacks to prevent Kernel Mode Malware 90. Submarine Voyage Data Recorder (SM-VDR) 91. Development of Submarine Launched Expendable Bathythermograph (SSLXBT) 92. AI Based FOD (Foreign Object Debris) Detection and Classification System for FOD Management at <i>IN</i> Air Station 93. Beamforming ASIC based Radar with Massive MIMO technology 94. AI based Collision Avoidance for Unmanned Vessels 95. AI enabled Automatic Floatation Device Dispersal Drone 96. Development of Hydro Acoustic ASW Vector Sensors which car be used with Drones 97. Converting Oxygen Torpedoes to UW Targets for ASW Training and Practice Torpedo Firings 98. Blue Green Lasers for Underwater Applications 99. Reusable Off board Missile Decoy 100. Microwave Obscurant Clouds (MOC) which are Programmable based on the Threat Portable RCS Measuring Device that is Capable of Independen 101. Operation and Deployable from Multiple Platforms (Ship, Boat 	80.	Damage Control Shore System	
 83. Pass Analysis Solutions for Defence 84. Moisture Wicking Hydrophobic Weapon Cover 85. Underwater Photography Noise Cancellation using Artificia Intelligence and Deep Learning 86. Axial Flux Motor based Lightweight Electric OBM with Optiona Fuel Cells 87. Disposable Light Weight Drone (DLD) 88. Underwater Remotely Operated Vehicle (UWROV) fo Underwater Inspection and Repairs 89. Hardware Enforced Solution against Advanced, Persistent and Coordinated Attacks to prevent Kernel Mode Malware 90. Submarine Voyage Data Recorder (SM-VDR) 91. Development of Submarine Launched Expendable Bathythermograph (SSLXBT) 92. AI Based FOD (Foreign Object Debris) Detection and Classification System for FOD Management at <i>IN</i> Air Station 93. Beamforming ASIC based Radar with Massive MIMO technology 94. AI based Collision Avoidance for Unmanned Vessels 95. AI enabled Automatic Floatation Device Dispersal Drone 96. Development of Hydro Acoustic ASW Vector Sensors which car be used with Drones 97. Converting Oxygen Torpedoes to UW Targets for ASW Training and Practice Torpedo Firings 98. Blue Green Lasers for Underwater Applications 99. Reusable Off board Missile Decoy 100. Microwave Obscurant Clouds (MOC) which are Programmable based on the Threat Portable RCS Measuring Device that is Capable of Independen 101. Operation and Deployable from Multiple Platforms (Ship, Boat 	81.	Electric Davit - Obliviation of Manual Hoisting	
 84. Moisture Wicking Hydrophobic Weapon Cover 85. Underwater Photography Noise Cancellation using Artificia Intelligence and Deep Learning 86. Axial Flux Motor based Lightweight Electric OBM with Optiona Fuel Cells 87. Disposable Light Weight Drone (DLD) 88. Underwater Remotely Operated Vehicle (UWROV) fo Underwater Inspection and Repairs 89. Hardware Enforced Solution against Advanced, Persistent and Coordinated Attacks to prevent Kernel Mode Malware 90. Submarine Voyage Data Recorder (SM-VDR) 91. Development of Submarine Launched Expendable Bathythermograph (SSLXBT) 92. AI Based FOD (Foreign Object Debris) Detection and Classification System for FOD Management at <i>IN</i> Air Station 93. Beamforming ASIC based Radar with Massive MIMO technology 94. AI based Collision Avoidance for Unmanned Vessels 95. AI enabled Automatic Floatation Device Dispersal Drone 96. Development of Hydro Acoustic ASW Vector Sensors which car be used with Drones 97. Converting Oxygen Torpedoes to UW Targets for ASW Training and Practice Torpedo Firings 98. Blue Green Lasers for Underwater Applications 99. Reusable Off board Missile Decoy 100. Microwave Obscurant Clouds (MOC) which are Programmable based on the Threat Portable RCS Measuring Device that is Capable of Independen 101. Operation and Deployable from Multiple Platforms (Ship, Boat 	82.	Low-cost Indigenous Pyrotechnic Systems for Naval Applications	
 85. Underwater Photography Noise Cancellation using Artificia Intelligence and Deep Learning 86. Axial Flux Motor based Lightweight Electric OBM with Optiona Fuel Cells 87. Disposable Light Weight Drone (DLD) 88. Underwater Remotely Operated Vehicle (UWROV) fo Underwater Inspection and Repairs 89. Hardware Enforced Solution against Advanced, Persistent and Coordinated Attacks to prevent Kernel Mode Malware 90. Submarine Voyage Data Recorder (SM-VDR) 91. Development of Submarine Launched Expendable Bathythermograph (SSLXBT) 92. AI Based FOD (Foreign Object Debris) Detection and Classification System for FOD Management at <i>IN</i> Air Station 93. Beamforming ASIC based Radar with Massive MIMO technology 94. AI based Collision Avoidance for Unmanned Vessels 95. AI enabled Automatic Floatation Device Dispersal Drone 96. Development of Hydro Acoustic ASW Vector Sensors which car be used with Drones 97. Converting Oxygen Torpedoes to UW Targets for ASW Training and Practice Torpedo Firings 98. Blue Green Lasers for Underwater Applications 99. Reusable Off board Missile Decoy 100. Microwave Obscurant Clouds (MOC) which are Programmable based on the Threat Portable RCS Measuring Device that is Capable of Independen 101. Operation and Deployable from Multiple Platforms (Ship, Boat 	83.	Pass Analysis Solutions for Defence	
 ^{85.} Intelligence and Deep Learning Axial Flux Motor based Lightweight Electric OBM with Optiona Fuel Cells B7. Disposable Light Weight Drone (DLD) 88. Underwater Remotely Operated Vehicle (UWROV) fo Underwater Inspection and Repairs 89. Hardware Enforced Solution against Advanced, Persistent and Coordinated Attacks to prevent Kernel Mode Malware 90. Submarine Voyage Data Recorder (SM-VDR) 91. Development of Submarine Launched Expendable Bathythermograph (SSLXBT) 92. AI Based FOD (Foreign Object Debris) Detection and Classification System for FOD Management at <i>IN</i> Air Station 93. Beamforming ASIC based Radar with Massive MIMO technology 94. AI based Collision Avoidance for Unmanned Vessels 95. AI enabled Automatic Floatation Device Dispersal Drone 96. Development of Hydro Acoustic ASW Vector Sensors which car be used with Drones 97. Converting Oxygen Torpedoes to UW Targets for ASW Training and Practice Torpedo Firings 98. Blue Green Lasers for Underwater Applications 99. Reusable Off board Missile Decoy 100 Microwave Obscurant Clouds (MOC) which are Programmable based on the Threat Portable RCS Measuring Device that is Capable of Independen 101. Operation and Deployable from Multiple Platforms (Ship, Boat 	84.	Moisture Wicking Hydrophobic Weapon Cover	
 Fuel Cells Fuel Cells Disposable Light Weight Drone (DLD) Underwater Remotely Operated Vehicle (UWROV) fo Underwater Inspection and Repairs Hardware Enforced Solution against Advanced, Persistent and Coordinated Attacks to prevent Kernel Mode Malware Submarine Voyage Data Recorder (SM-VDR) Development of Submarine Launched Expendable Bathythermograph (SSLXBT) AI Based FOD (Foreign Object Debris) Detection and Classification System for FOD Management at <i>IN</i> Air Station Beamforming ASIC based Radar with Massive MIMO technology AI enabled Automatic Floatation Device Dispersal Drone Development of Hydro Acoustic ASW Vector Sensors which car be used with Drones Converting Oxygen Torpedoes to UW Targets for ASW Training and Practice Torpedo Firings Blue Green Lasers for Underwater Applications Reusable Off board Missile Decoy Microwave Obscurant Clouds (MOC) which are Programmable based on the Threat Portable RCS Measuring Device that is Capable of Independen Operation and Deployable from Multiple Platforms (Ship, Boat 	85.	Underwater Photography Noise Cancellation using Artificial Intelligence and Deep Learning	
 88. Underwater Remotely Operated Vehicle (UWROV) fo Underwater Inspection and Repairs 89. Hardware Enforced Solution against Advanced, Persistent and Coordinated Attacks to prevent Kernel Mode Malware 90. Submarine Voyage Data Recorder (SM-VDR) 91. Development of Submarine Launched Expendable Bathythermograph (SSLXBT) 92. AI Based FOD (Foreign Object Debris) Detection and Classification System for FOD Management at <i>IN</i> Air Station 93. Beamforming ASIC based Radar with Massive MIMO technology 94. AI based Collision Avoidance for Unmanned Vessels 95. AI enabled Automatic Floatation Device Dispersal Drone 96. Development of Hydro Acoustic ASW Vector Sensors which car be used with Drones 97. Converting Oxygen Torpedoes to UW Targets for ASW Training and Practice Torpedo Firings 98. Blue Green Lasers for Underwater Applications 99. Reusable Off board Missile Decoy 100. Microwave Obscurant Clouds (MOC) which are Programmable based on the Threat Portable RCS Measuring Device that is Capable of Independen 101. Operation and Deployable from Multiple Platforms (Ship, Boat 	86.	Axial Flux Motor based Lightweight Electric OBM with Optional Fuel Cells	
 ^{88.} Underwater Inspection and Repairs ^{89.} Hardware Enforced Solution against Advanced, Persistent and Coordinated Attacks to prevent Kernel Mode Malware 90. Submarine Voyage Data Recorder (SM-VDR) 91. Development of Submarine Launched Expendable Bathythermograph (SSLXBT) 92. AI Based FOD (Foreign Object Debris) Detection and Classification System for FOD Management at <i>IN</i> Air Station 93. Beamforming ASIC based Radar with Massive MIMO technology 94. AI based Collision Avoidance for Unmanned Vessels 95. AI enabled Automatic Floatation Device Dispersal Drone 96. Development of Hydro Acoustic ASW Vector Sensors which car be used with Drones 97. Converting Oxygen Torpedoes to UW Targets for ASW Training and Practice Torpedo Firings 98. Blue Green Lasers for Underwater Applications 99. Reusable Off board Missile Decoy 100. Microwave Obscurant Clouds (MOC) which are Programmable based on the Threat Portable RCS Measuring Device that is Capable of Independen 101. Operation and Deployable from Multiple Platforms (Ship, Boat 	87.	Disposable Light Weight Drone (DLD)	
 ^{89.} Coordinated Attacks to prevent Kernel Mode Malware 90. Submarine Voyage Data Recorder (SM-VDR) 91. Development of Submarine Launched Expendable Bathythermograph (SSLXBT) 92. AI Based FOD (Foreign Object Debris) Detection and Classification System for FOD Management at <i>IN</i> Air Station 93. Beamforming ASIC based Radar with Massive MIMO technology 94. AI based Collision Avoidance for Unmanned Vessels 95. AI enabled Automatic Floatation Device Dispersal Drone 96. Development of Hydro Acoustic ASW Vector Sensors which car be used with Drones 97. Converting Oxygen Torpedoes to UW Targets for ASW Training and Practice Torpedo Firings 98. Blue Green Lasers for Underwater Applications 99. Reusable Off board Missile Decoy 100. Microwave Obscurant Clouds (MOC) which are Programmable based on the Threat Portable RCS Measuring Device that is Capable of Independen 101. Operation and Deployable from Multiple Platforms (Ship, Boat 	88.		
91.Development Bathythermograph (SSLXBT)LaunchedExpendable92.AIBasedFOD(ForeignObjectDebris)Detectionand Classification93.Beamforming ASIC based Radar with Massive MIMO technology94.AI based Collision Avoidance for Unmanned Vessels95.AI enabled Automatic Floatation Device Dispersal Drone96.Development of Hydro Acoustic ASW Vector Sensors which car be used with Drones97.Converting Oxygen Torpedoes to UW Targets for ASW Training and Practice Torpedo Firings98.Blue Green Lasers for Underwater Applications99.Reusable Off board Missile Decoy100.Microwave Obscurant Clouds (MOC) which are Programmable based on the Threat101.Operation and Deployable from Multiple Platforms (Ship, Boat	89.	Hardware Enforced Solution against Advanced, Persistent and Coordinated Attacks to prevent Kernel Mode Malware	
 91. Bathythermograph (SSLXBT) 92. AI Based FOD (Foreign Object Debris) Detection and Classification System for FOD Management at <i>IN</i> Air Station 93. Beamforming ASIC based Radar with Massive MIMO technology 94. AI based Collision Avoidance for Unmanned Vessels 95. AI enabled Automatic Floatation Device Dispersal Drone 96. Development of Hydro Acoustic ASW Vector Sensors which car be used with Drones 97. Converting Oxygen Torpedoes to UW Targets for ASW Training and Practice Torpedo Firings 98. Blue Green Lasers for Underwater Applications 99. Reusable Off board Missile Decoy 100. Microwave Obscurant Clouds (MOC) which are Programmable based on the Threat Portable RCS Measuring Device that is Capable of Independen 101. Operation and Deployable from Multiple Platforms (Ship, Boat 	90.	Submarine Voyage Data Recorder (SM-VDR)	
 92. Classification System for FOD Management at <i>IN</i> Air Station 93. Beamforming ASIC based Radar with Massive MIMO technology 94. AI based Collision Avoidance for Unmanned Vessels 95. AI enabled Automatic Floatation Device Dispersal Drone 96. Development of Hydro Acoustic ASW Vector Sensors which car be used with Drones 97. Converting Oxygen Torpedoes to UW Targets for ASW Training and Practice Torpedo Firings 98. Blue Green Lasers for Underwater Applications 99. Reusable Off board Missile Decoy 100. Microwave Obscurant Clouds (MOC) which are Programmable based on the Threat Portable RCS Measuring Device that is Capable of Independen 101. Operation and Deployable from Multiple Platforms (Ship, Boat 	91.		
 93. Beamforming ASIC based Radar with Massive MIMO technology 94. AI based Collision Avoidance for Unmanned Vessels 95. AI enabled Automatic Floatation Device Dispersal Drone 96. Development of Hydro Acoustic ASW Vector Sensors which car be used with Drones 97. Converting Oxygen Torpedoes to UW Targets for ASW Training and Practice Torpedo Firings 98. Blue Green Lasers for Underwater Applications 99. Reusable Off board Missile Decoy 100. Microwave Obscurant Clouds (MOC) which are Programmable based on the Threat Portable RCS Measuring Device that is Capable of Independen 101. Operation and Deployable from Multiple Platforms (Ship, Boat 	92.		
 95. AI enabled Automatic Floatation Device Dispersal Drone 96. Development of Hydro Acoustic ASW Vector Sensors which car be used with Drones 97. Converting Oxygen Torpedoes to UW Targets for ASW Training and Practice Torpedo Firings 98. Blue Green Lasers for Underwater Applications 99. Reusable Off board Missile Decoy 100. Microwave Obscurant Clouds (MOC) which are Programmable based on the Threat Portable RCS Measuring Device that is Capable of Independen 101. Operation and Deployable from Multiple Platforms (Ship, Boat 	93.	Beamforming ASIC based Radar with Massive MIMO technology	
 96. Development of Hydro Acoustic ASW Vector Sensors which car be used with Drones 97. Converting Oxygen Torpedoes to UW Targets for ASW Training and Practice Torpedo Firings 98. Blue Green Lasers for Underwater Applications 99. Reusable Off board Missile Decoy 100. Microwave Obscurant Clouds (MOC) which are Programmable based on the Threat Portable RCS Measuring Device that is Capable of Independen 101. Operation and Deployable from Multiple Platforms (Ship, Boat 	94.	AI based Collision Avoidance for Unmanned Vessels	
 96. be used with Drones 97. Converting Oxygen Torpedoes to UW Targets for ASW Training and Practice Torpedo Firings 98. Blue Green Lasers for Underwater Applications 99. Reusable Off board Missile Decoy 100. Microwave Obscurant Clouds (MOC) which are Programmable based on the Threat Portable RCS Measuring Device that is Capable of Independen 101. Operation and Deployable from Multiple Platforms (Ship, Boat 	95.	AI enabled Automatic Floatation Device Dispersal Drone	
 97. and Practice Torpedo Firings 98. Blue Green Lasers for Underwater Applications 99. Reusable Off board Missile Decoy 100. Microwave Obscurant Clouds (MOC) which are Programmable based on the Threat Portable RCS Measuring Device that is Capable of Independen 101. Operation and Deployable from Multiple Platforms (Ship, Boat 	96.	Development of Hydro Acoustic ASW Vector Sensors which can be used with Drones	
 99. Reusable Off board Missile Decoy 100. Microwave Obscurant Clouds (MOC) which are Programmable based on the Threat Portable RCS Measuring Device that is Capable of Independen 101. Operation and Deployable from Multiple Platforms (Ship, Boat 	97.	Converting Oxygen Torpedoes to UW Targets for ASW Training and Practice Torpedo Firings	
 100. Microwave Obscurant Clouds (MOC) which are Programmable based on the Threat Portable RCS Measuring Device that is Capable of Independen 101. Operation and Deployable from Multiple Platforms (Ship, Boat 	98.	Blue Green Lasers for Underwater Applications	
 based on the Threat Portable RCS Measuring Device that is Capable of Independen 101. Operation and Deployable from Multiple Platforms (Ship, Boat 	99.	Reusable Off board Missile Decoy	
101. Operation and Deployable from Multiple Platforms (Ship, Boat	100.	Microwave Obscurant Clouds (MOC) which are Programmable based on the Threat	
	101.	Portable RCS Measuring Device that is Capable of Independent Operation and Deployable from Multiple Platforms (Ship, Boat, UAV, etc.)	

133	
Ser	Project
	Autonomous Weaponised Boat Swarms
103.	AI based Multi Radar Signal Conversion, Distribution & Multi Target Tracking for <i>IN</i> Ships (Particle Filter)
104.	Depth Based Positioning System to Navigationally Fixing Position of Submarine
105.	AI based Ship Recognition Software using Image Processing
106.	Fire Suppressant Material that can Suppress Fire in the Initial Stage only
107.	Multi Sensor Real Time Monitoring of Running Machinery On- board Submarine
108.	Noise Augmentation Unit for Masking Submarines Own Signature Skin Friction of Water
109.	Smart, Lightweight, Retractable and easily Deployable Cable Gangways for Submarine Shore Supply
110.	Smart Mobile Units for Shore Supply and Charging Cable
111.	Non Hull Penetrating Connectivity Solution for Submarines at Harbour
112.	Blue Green Laser Technology based on Light Detection & Ranging (LiDAR) to establish Communication from a Ship or an Aircraft to a Submarine
113.	Development of Super Hydrophobic Paint for Torpedoes to reduce Skin Friction of Water
114.	30 mm Proximity Fuze for Gun Mounts
115.	Long Range Communication Technology for Locating Torpedoes
116.	AI Based Gun Parts Inspection System (Software & Hardware)
117.	AI Based Barrel Crawling Bot Inspection System (Software & Hardware)
118.	Personal Locator Device with Fall Detection for Firefighters/ Damage Control Teams On-board Ships
119.	Smart Firefighting Features to the existing Breathing Apparatus
120.	Remote Controlled NBC Monitoring BOT
121.	Development of Low Cost, Indigenous Morpene Compound
122.	Axial Motor Based Portable Submersible Pumps in order to Sustainability Reduce Weight
123.	Fire Fighting BOT to allow a User to Control a Fire Fighter Robot
	Caged Drone with TIC for Fire Fighting in Confined Spaces
125.	Aerogel Based Fire Fighting Proximity Suit for better Efficiency in Fire Fighting

<u>Ser</u>	<u>Project</u>
126.	Instant Cooling Vest for Fire Fighters
127.	Portable Hydraulic Metal Cutter
128.	Indigenous Aluminised Fire Proximity Suit (AFPS)
129.	Portable Rugged, Waterproof and Lightweight Torch for DC/FF Activities including Underwater
130.	Lightweight Filtration based Breathing Apparatus
131.	Long Range Communication for Tracking and Exchanging Short Message between <i>IN</i> Helicopter (Chetak) and the Ships.
132.	Lightweight Integrated Indigenous ELINT/ COMINT System for NSUAS/MULE Class RPA
133.	GNSS based 3-D HELO Approach and Landing Aid for <i>IN</i> Helicopters for Assistance in Approach on Landing in bad Weather/Reduced Visibility/ Night at Sea States.
134.	Underwater Communication for Swarm of AUVs
135.	Underwater Navigation System for AUVs
136.	3D Forward Looking Sonar for Surface Platforms and Autonomous Underwater Vehicles (AUVs)
137.	AI based Adaptive Noise Cancellation for Sonars of Autonomous Underwater Vehicles (AUVS) and Ship Borne Sonar
138.	Autonomous Beach Check Survey Device
139.	Electro Optical Infrared Sensor System Contained in an External Pod Composed of a Variety of Sensors
140.	Airborne High Performance Multi-Mode Active Electronic Scanned Array (AESA) Radar
141.	Expendable Mobile ASW Training Target (EMATT), capable of Simulating the Sounds and Movement of a Real Submarine
142.	Airborne High Performance Lightweight COMINT System
	ASIC Base Beam Forming Antenna for Space Communication
144.	Digital Radio Frequency Memory (DRFM) Based Simulator on a Drone for AD Training and Radar Calibration
145.	AI Based Remote Monitoring System to assess Wear down of Outboard Shaft Bearing
146.	Autonomous Starting, Running and Shutting down of a Diesel Alternator suitable for Charging Lithium Ion Batteries
147.	Propulsion System of AUVs
148.	Portable Under Water Diver Delivery System (PUDDS)
Î	Submersible Boat
150	Multi Utility Long Endurance (MULE) NSUAS Class RPA

<u>Ser</u>	<u>Project</u>
151.	Environmentally Benign Firefighting System for Machinery Spaces
152.	Autonomous Hull Crawler
153.	Deep Fat Fryer Gimbaled
154.	Vegazel - Very High Speed Data Transfer
155.	Encore - Video Streaming Solution to Relay UAV Footage in Real Time
156.	Submarine Detection Technology
157.	Tactical Multi Role Combat Airborne Loitering UAS
158.	Material Movement Shifting onboard Ship over Hatch Door Coaming
159.	Labour Saving Devices for Material Shifting onboard Submarines
160.	Secure AV Communication
161.	Nonintrusive, Multistep and Multi-Technology Fusion Intrusion Detection Systems to Secure Defence Establishment
162.	Achieving IR and Ultrasonic Stealth Through Advanced Material Insulation
163.	Fast, Reliable and Economic Aerial Transport of Armed Forces – Autonomous Cargo Carrying Aerial Vehicle (ACAV)
164.	Heavy Lift Autonomous Flying Robot for Shipborne Operations - Autonomous Cargo Carrying Aerial Vehicle (ACAV)
165.	Automation of Material Movement between Navy Ship and Jetty
166.	Ultra Endurance Monorotor Drone – ARUN
167.	Zebra Skyplane

Directorate of Indigenisation NHQ/ MoD, W 402, 4th Floor, West Wing, Nau Sena Bhawan, Delhi Cantt, New Delhi 110010 Telephone: 011-28702778, Fax: 011-28702773 Email ID: doi-navy@nic.in

Appendix 'J' (Refers to Para 2 Chap 10)

PROJECTS UNDER 'TECHNOLOGY DEVELOPMENT SCHEME'

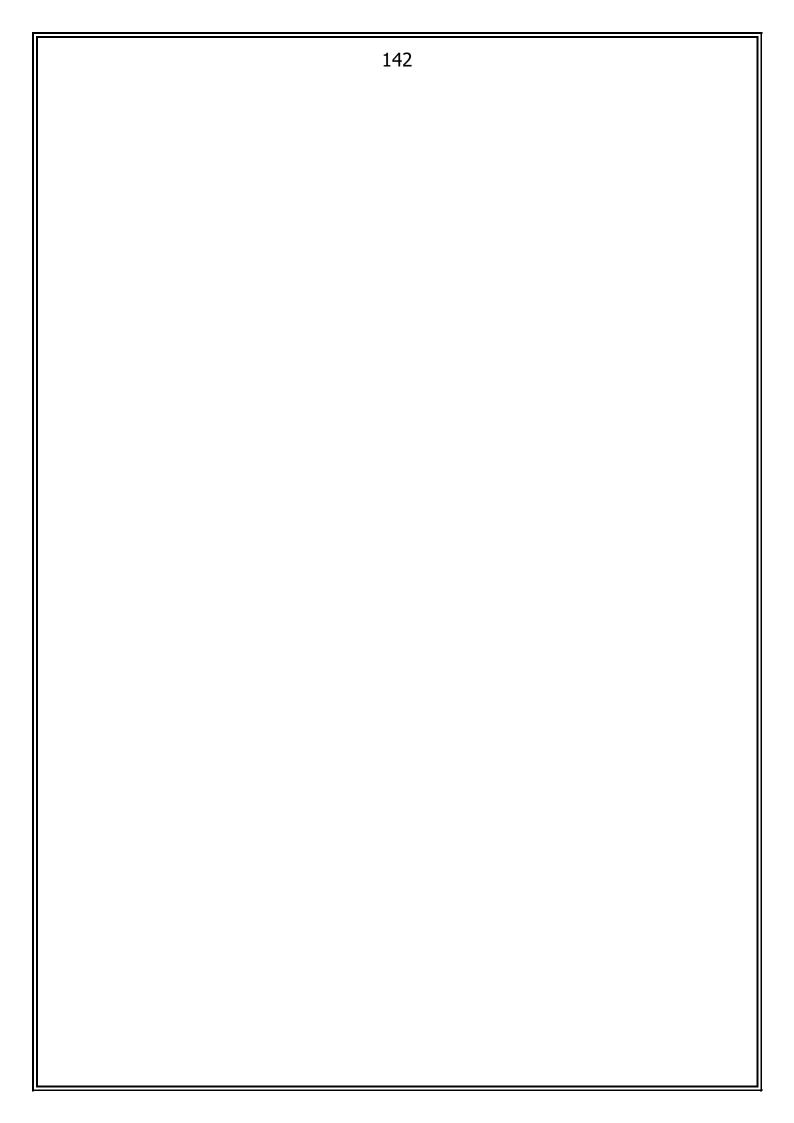
Ser	Project
1.	Standalone Miniaturised Telemetry Package (SMTP)
2.	Composite WT/GT Doors and Hatches for <i>IN</i> ships
3.	Leveraging Health and Usage Monitoring Systems (HUMS) for Enhancing Aircraft Serviceability
4.	Development of Indigenous Water Jet Propulsion System
5.	VLF Loop Antenna Including the Below Deck Interface Equipment for Kalvari Class Submarine
6.	VLF- HF Matrix Including the Interface Equipment for Kalvari Class Submarines
7.	Use of Composite Technology for Bottles Storing HP Air and Hydrogen
8.	Development of Marine Desalinators for Life Rafts onboard Indian Naval Ships
9.	Tide Efficient Gangway
10.	SSPA State 2 Amplifier for AMDR
11.	Underwater Launched Unmanned Aerial Vehicle (ULUAV)
12.	Pressure gauge – Hawk
13.	Motor for Pump-jet Propulsion
14.	Wireless Aircraft Flight Data Recorder
15.	Buoyant Cable Antenna
16.	RF Components for EW System
17.	Radar Absorption Material

137

	158
18.	Mini EW Systems with Tethered Drone
19.	Fibre Optic Cables with Connectors – RPA
20.	Optical Torsion Meter
21.	Multi-Function Antenna
22.	Engine Fire Detection System LRUs – Sea King Aircraft
23.	Submarine Launched Autonomous Underwater Vehicle (SLAUV)
24.	TGR (Terminal Guidance Radar)
25.	Development of Indigenous Thrusters
26.	Dynamic Positioning System for Mine Counter Measure Vessel (MCMV)

Directorate of Indigenisation NHQ/ MoD, W 402, 4th Floor, West Wing, Nau Sena Bhawan, Delhi Cantt, New Delhi 110010 Telephone: 011-28702779, Fax: 011-28702773 Email ID: doi-navy@nic.in

Appendix 'K' (Refers to Para 2 Chap 10)


MISCELLANEOUS PRODUCTS TO BE TAKEN UP FOR DEVELOPMENT

<u>Ser</u>	Projects	Description
1.	Active Mounts	Traffic Analysis to filter Data and VoIP traffic based on keywords and IP address over Naval Networks.
2.	Advanced Hull Coatings	Advanced anechoic hull coatings to reduce low frequency radiated noise as well as absorb incident acoustic energy.
3.	Radar Absorption Paints	Radar absorbent materials/ coatings which are also resistant to immersion in sea water
4.	Low Acoustic Signature Machinery	Manufacture of low acoustic signature mechanical machinery such as hydraulic pumps etc.
5.	Hull Material	Development of high tensile density, high yield, corrosion resistant low magnetic signature steel for pressure hull of submarines
6.	Hull Paints	Long life solvent less epoxy coating for internal as well as external submarine applications
7.	Electric Drive Propulsion for Submarines	Development of main drive technology for motors.
8.	Solid State Power Electronics Control for Submarines	Sophisticated, solid state power control devices for control of motors (for electric drive and other motors) with an aim to reduce the total power consumption during operations.
9.	Improved Battery Power Systems for Submarines	Integrated with all sensors of the submarines

	140		
<u>Ser</u>	Projects	Description	
10.	Tethered submarine Buoy	To enable submarine communications at depth as well as intelligence collection.	
11.	Fuel Cells	To enhance performance of existing fuel cell as well as R&D of alternate fuel cell technologies like PEM, AFC etc.	
12.	Carrier Borne Fixed Wing UCAVs with Satellite Link	-	
13.	Sonobuoys	DIFAR / DICASS / Bathy	
14.	Long Range Electro Optical Sensors	For helicopters, UAVs and MR Aircraft	
15.	Fresnel Lens Based Optical Landing System	For aircraft carriers and airfields	
16.	UW LED Lights	Tool for diver to provide lighting underwater. To be miniaturised to fit diving helmet/ mask.	
17.	SupersonicAerialTargets,RemoteControlledTargetBoat(RCTB) withDPS	Supersonic targets for practice firing of missiles/ guns and remote controlled unmanned boats as surface targets for practice firings.	
18.	Active off Board Decoys	Decoys to be fired from ship capable of seducing missiles at standoff ranges from the firing platform.	
19.	Close-in-Weapon System	Small calibre multi barrel guns with high rate of fire > 4000 rd/ min	
20.	Infra-Red/ Thermal Imaging Search and Tracking System (IRST)	A passive detection system (range > 30km) based on IR/ night vision capability for fitment on ships.	
21.	Next Gen NVDs (IR/ Thermal Imaging)	State of art 3 rd generation Night Vision Devices.	
22.	Helmet Mounted NVBs	Night Vision Binoculars (NVB) helmet mounted, to provide hands free capability.	
23.	Fuses	-	
24.	Ship Installed Chemical System (SICS)	System capable of detecting Chemical Agents to be installed onboard IN Ships.	

	141		
<u>Ser</u>	Projects	Description	
25.	Magazine Fire Fighting Systems for Ships	Fire Detection and associated Fire Fighting System (containing different propellant and explosives) for installation in various weapon magazines on board IN ships.	
26.	Specialised SV Mount	Cradle mounts of Talwar Class ships and Raft mounts of P-28 class ships	
27.	Motor Boat Engines	-	
28.	5MW Electric Propulsion Equipment	Development of indigenous warship grade electric propulsion equipment	
29.	Non-Magnetic Engines	-	

Directorate of Indigenisation NHQ/ MoD, W 402, 4th Floor, West Wing, Nau Sena Bhawan, Delhi Cantt, New Delhi 110010 Telephone: 011-28702779, Fax: 011-28702773 Email ID: doi-navy@nic.in

Appendix 'L' (Refers to Para 3 Chap 10)

PROJECTS COMPLETED/IN PROGRESS THROUGH DRDO/ PRIVATE INDUSTRY

Ser.	Project	Description
1.	Echo Sounder (Multi Frequency Type)	M/s KELTRON
2.	Log EM (Type EML 40)	M/s KELTRON
3.	Main Switchboard/ EDC/ EDPs	M/s L&T M/s GE Ltd
4.	Converters, 400 Hz	M/s ELMOT Alternators
5.	VCS System (VOIP Based)	M/s BEL
6.	C&C Switchboard	M/s L&T, M/s Marine Electricals
7.	Main Broadcast & SRE System	M/s Phi AudioCom
8.	SIRS	M/s ECIL
9.	Sound Power Telephones (SPT)	M/s ELCOME Marine M/s Linea M/s Marine Electricals
10.	LED Light Fittings	M/s McGeoach Marine Electricals M/s Ray Enterprises
11.	Power Panel for Heavy Loads	M/s L&T, Mumbai M/s Marine Electricals
12.	Degaussing Cable	M/s Universal Cables Bangalore
13.	Emergency Supply System	M/s Ray Enterprises
	Rectifiers	M/s Precision Power Ltd
15.	Ship Data Network (SDN)	M/s BEL, Bangalore
16.	Integrated Bridge System (IBS)	M/s Navicom
17.	CMS	M/s TPSED Mumbai
18.	Conventional Light Fittings	M/s Ray Enterprises
19.	AELs	M/s Ray Internationals
20.	Power Cables for Main Switchboard	M/s Nicco Corporation & Radiant Cables
21.	Lighting Cables	M/s Radiant Cables
22.	Cable Ways	M/s Shakti Engg Works
23.	Air Cooled Transformers (20 KVA)	M/s Marine Electricals

<u>Ser.</u>	<u>Project</u>	Description
24.	Power Panel for Engine and DA Room	M/s L&T
25.	Lighting Panel	M/s Marine Electrical
		M/s Radiant cables
26.	Control and Monitoring Cable	M/s Siechem Technology
		M/s Nicco Corporation
27.	COS for Heavy and Machinery LOADS	M/s L&T
28.	VLF system	DRDO/ Industry
29.	INCIS (IN Communication	
29.	Interoperability System)	M/s WESEE
30.	AVLF Modulator/ Demodulators	M/s DEAL/ BEL
31.	Next Generation Helo Harnessing	M/s L&T
51.	and Traversing System (NGHHTS)	
<u>Addi</u>	tional Shipborne Systems	
32.	GSHRB	M/S ECIL
33.	C & C SW BD	M/S L & T LTD
34.	Emergency DA SWBD	M/S Marine Electricals
35.	20 KVA Convertor	M/S ELMOT LTD
36.	ACOS	M/S Marine Electrical
	SIRS	M/S ECIL
38.	ICCP System	M/S Cathodic Control Ltd
39.	Transformer	M/S Static Transformer
40.	Lighting System	M/S ISAAC Engg M/S Manish Industries M/S Arvin Industries
		M/S Ray Enterprises
41.	Emergency Supply System	M/S AIM Engg M/S ISAAC Engg
42.	30 KVA Helo Convertor	M/S Kirloskar Ltd
43.	Helo Starting Rectifier	M/S Static Transformer
44.	CCS MK-III	
45.	VCS-28	
46.	SDN-28	M/S BEL
47.	LINK-II MOD-III	
48.	LUP-329	
49.	100 W MF Transmitter	
50.	EW SANKET	

<u>Ser.</u>	<u>Project</u>	Description
51.	V/UHF COMNIT/ DF System ELK- 7036-WB DF	M/S BEL
52.	MB/SRE	M/a Dhi Audia Cara
53.	Intercom System	– M/s Phi Audio Com
54.	SATCOM	ISRO
55.	SATCOM, PCS	M/s DEAL/ DRDO/ BEL
56.	Network Security Encryptors	M/s ECIL/BEL
57.	EW Ellora/ Ellora Mk II	M/s DLRL/ BEL
58.	EW Varuna	M/s DLRL/ BEL
59.	CMS-28	
60.	ATM Switch for CMS	M/s BEL
61.	DDU for RLG	M/s Data Patterns Ltd
62.	Kavach Mod –II	M/s Machine Tool
63.	50 KVA Converter	M/s PCL Ltd
64.	Radar Revathi	M/s BEL
65.	UWT	M/c Kaltrop
66.	Echo Sounder V-2	– M/s Keltron
67.	AK 630	M/s GSF, M/s Cossipore & M/s BEL
68.	SOP for AK 630	M/s BEL
69.	ITTL	M/s L&T
70.	FCS LYNX U1	
71.	IAC MOD 'C'	M/s BEL
72.	SONAR HUMSA NG	
73.	IRL	M/s L&T
74.	Anchor Capstans	M/s Geeta
75.	Foldable Hangar Door	M/s L&T
76.	Railed Helo Traversing System	
77.	Shore Supply Cables (including light weight SS cables)	M/s Radiant Cables M/s Siechem Technologies Pvt. Ltd M/s Quadrant Cables M/s Apar Cables M/s Thermo Cables M/s Polycab Ltd.
78.	SFC	M/s Precision Power Products M/s Elcome Integrated System

-	— • •	
<u>Ser.</u>	<u>Project</u>	Description
		M/s Static Transformers M/s HH Group,
79.	Boat Davit	M/s Fibroplast, M/s SHM Shipcare, M/s Hemant Engg
80.	AC Condenser Cooling Water Pumps	M/s KBL Pumps
81.	Auxiliary Cooling Water Pumps	M/s SPX
82.	Chilled Water Pumps	M/s DESMI
83.	Fresh Water Pumps	
84.	Economiser Elements for Boilers of Vikramaditya	M/s Virtue Engineering M/s BHEL
85.	Valves Fitted in Freshwater, Feed Water, Sea Water and Other Auxiliary System	M/s GDPA, M/s L&T M/s Lender M/s Meason
86.	Feed Condensate Booster Turbo Driven Pump	
87.	Proportioning Pumps for Boiler Dosing	M/s TOCOL
88.	Motor Driven Fuel Pumps	M/s DESMI M/s Alektor M/s Allenetor
89.	Reducing Stations	M/s Hale Hamilton Pvt Ltd M/s Elgi
90.	Globe Valves	M/s GDPA, M/s Meason M/s Lender M/s L&T
91.	Diesel Monitoring Equipment	M/s Symptronic
92.	Coolant Expansion Tanks	M/s Ship Builder
93.	Electric Bilge Drying Pumps	M/s SPX, M/s MERU M/s DESMI
94.	Refrigerating Plants	M/s Accel, M/s KPCL, M/s JCIPL
95.	HP Air Compressors – Oil Filter (Submarine)	M/s Burckhardt DRDO/ CVRD M/s Elgi
96.	IBA (Integrated Broadcast Application)	M/s Data Byte

Ser.	Project	Description
	<u> </u>	M/s NUKON Industries
	HP Air Compressors – Air Filter	DRDO/ CVRD
97.	(Submarine Application)	M/s BEKU/ NUCON
		,,
98.	Hydraulic Filters Filter Element	
90.	(Submarine Application)	DRDO/ CVRD
99.	Air + Water Filters Cartridge	
<i>.</i>	(Submarine Application)	
100.	Reeled Compressed Air Foam	
100.	System	M/s Adisan Systems LLP
101.	Indopene Foam Compound	
	Development of Integrated	
102.	SATCOM Multifunction Antenna	M/s Navstar
	(ISMS) for SSK Submarines	
	Axial Flux Motors	M/s Tressa Energy
104.	Inertial Energy Storage Systems	M/s ELMOT
105.	SSM Loader	M/s Mahindra Defence
		Systems Ltd
	Fuel/ Lub Oil Centrifuge	M/s Alfa Laval
	genisation Process in Progress	
	HDVLF Rx	M/s DEAL, M/s BEL
	HEMP, 1000 Amps Filter	DRDO, M/s Zeonics
109.	Indigenous Secure Router	M/s Nivetty Systems
110	MDA-DSS (Maritime Domain	
110.	Awareness – Decision Support Software	M/s CRL, M/s BEL
111	Fin Stabiliser	
	ONEGA Control System	M/s L&T
	Development of Portable &	
113.	Universal Pump Efficiency	M/s CSIR, CSIO
	Monitoring System	
114	TDFL Pump for VKD	M/s Tocol Machine Tools
	Main Circulating Pump for VKD	Pvt. Ltd
тт Ј .	Thermal Imaging Camera (TIC)	M/s BEL
116		
	85KW DC Motor with starter for HP	M/s Elmot Alternator Pvt.

Appendix 'M' (Refers to Para 23 Chap 01)

LIST OF IN ITEMS UPLOADED ON SRIJAN DEFENCE PORTAL

Ser.	Description	Srijan Portal ID No.
1.	Block B220-3	PRO70926
2.	PAID CA PCB	PRO70927
3.	Y(B)(P)(E) Power Supply Module	PRO70929
4.	Article (TSE) (Z) K(Y)	PRO70930
5.	Baget	PRO70932
6.	Cable Harness	PRO70934
7.	Waveguide Drier	PRO70935
8.	Horizontal Lifting Device	PRO70939
9.	Front Section Horizontal lifting Device	PRO70941
10.	CM Transportation on Trolley	PRO70942
11.	Front/ mid transportation on Trolley	PRO70943
12.	Amplifier Multiplier Module of O(P)IM(Z)1-91	PRO70945
13.	RFQC Test Facility	PRO70946
14.	Power Supply Module M2K3	PRO70947
15.	Power Supply Module M2K4	PRO70949
16.	Power Supply Module M2K6	PRO70950
17.	Ka Band Main Receiver	PRO70952
18.	RSC 1520 V Board Protection PCB Upper Display	PRO70953
19.	Test Station	PRO70954
20.	Main Circulating Pump	PRO71093
21.	TDFL Pump	PRO71094
22.	1500KW TURBO GENERATOR	PRO71095
23.	Arresting Gear Wire Rope (1100 m reel)	PRO71092
24.	Interface Unit for AWOS MNS	PRO71111
25.	HVLAS	PR071112
26.	LCU (AMDR 2D)	PRO71118
27.	BSI Module	PRO71117
28.	Rotary Joint (AMRD 2D)	PRO71116
29.	TWT (AMDR 2D)	PRO71114
30.	SPC (Fregat M2EM Radar)	PRO71113

Sor	Description	Sciion Dortal ID No
<u>Ser.</u>	Dubber C75 C164 VO(Dings of	<u>Srijan Portal ID No.</u>
31.	Rubber C75:C164 'O' Rings of Various Sizes	PRO73858
32.	Rubber Seal (26 types)	PRO73859
33.	Diaphragm Sealing Rings, Gaskets and 'O' Rings of Various Types	PRO73860
34.	Cross Gauge for Submarine	PRO73861
35.	Smoke Markers and Float Smoke	PRO73863
36.	Shear Bolt and Washer	PRO73864
37.	Main Fueling Gun and Vent Gun	PRO73865
38.	Grease of Various Types	PRO73866
39.	O-rings (set of 37 Nos)	PRO73867
40.	Door Plug O-rings	PRO73868
41.	Missile TLC Junction Box O-ring	PRO73870
42.	Cocking Lever, Springs, Extractor of Various Types	PRO73871
43.	Gauge Testing Blow of Striker & Striker-Eccentricity Equipment	PR073872
44.	Gauge Measuring Bore	PR073874
45.	Plug Bore Gauge	PRO73875
46.	'O' Rings of Various Types	PRO73876
47.	SSE (Green & Red)	PRO73877
48.	RPM Pickup	PRO73878
49.	Warhead Refilling	PRO73881
50.	Oil 4LF	PRO73882
51.	192P- 44- 10 (Booster Case Washer)	PR073884
52.	0501-8 (Locking Washer)	PRO73885
53.	17473-72 (Screw secure clamp)	PRO73886
54.	300 3A - 1030-4-2-30KP (Bolt 131103-80)	PRO73887
55.	2-12-48KP-OST (Bolt 1310013-80)	PRO73890
56.	12-KP-OST (Nut 133048-80)	PRO73891
57.	Enamels, Solvents, Hardners and Primers of Various Types	PRO73895
58.	Molykote Medium 33 Silicon Low Temperature Grease	PRO73897
59.	High Vacuum Silicon Grease	PRO73900
60.	Screws, Lock, Push Rod, Pin and Springs of Various Types	PRO73902

<u>Ser.</u>	Description	Srijan Portal ID No.
<u>61.</u>	Ball Bearing of Various Types	PRO73904
62.	All Pressure Switch	PRO73906
63.	Cut Off Valve	PRO73908
	Poppet Valve	
64.	• •	PRO73911
65.	Arcanol Grease for Torpedo	PRO73913
66.	Mobil XHP 221 Grease for Torpedo	PRO73915
67.	Release Wire for Torpedo	PRO73917
68.	Scoop Arming Wire for Torpedo	PRO73919
69.	Coupling Ring for Torpedo	PR073921
70.	CRU Battery	PR073922
71.	Molykote HP-870 Grease	PR073924
72.	Molykote 55 Silicon Grease	PR073926
73.	Air Charging Gun	PR073927
74.	'O' Tank Charging Gun	PRO73929
75.	'G' Tank Charging Gun	PRO73931
76.	Silica Indicator	PR073932
77.	Silica Bags	PRO73934
78.	Loctite 222, 495,241,242,648 adhesive	PRO73936
79.	Poly Sulphide Sealing Compound MIL-S-81733, MIL-S-8802, PR-1750- A2	PRO73937
80.	Explosive Bolts for Missiles	PR073938
81.	Rubber Comp. (03 Types)	PR073939
82.	Electrical Squib Connector	PR073941
83.	Plasticiser Sealant	PR073985
84.	Sealant and Hardener	PR073986
85.	Glue 88(N)(P)	PR073987
86.	Leak-Tec, Leak Detection Liquid (Type 16 OX)	PRO73988
87.	Anti-seizure Paste (OKS-250)	PR073989
88.	Sealants	PR073990
89.	Accumulator Diaphragm for SSM Missile	PRO73991
90.	Rubber Comp. (16 Types)	PR073992
91.	Screws, Levers, Springs of Various Types	PRO73993
92.	Pinion	PR073994
H	Sector Gear	PR073996

Ser.	Description	Srijan Portal ID No.
94.	Seal Packing	PR073997
95.	Support	PR073998
96.	Cassette Flares	PR073999
97.	Foldable Butt LMG with Swivel Mounting and Kevlar Shield	PRO74001
98.	TG Stub	PRO74002
99.	End Ring	PR074003
100.	Nefras C4-155/200	PR074004
101.	Nefras C4-80/120	PR074005
102.	Antistatic Additive SIGBOL	PR074006
103.	Sealing Paste (Y)-(Z)0(I)-5	PR074007
104.	Vulcanising Paste No. 9	PR074008
105.	Sealing Compound (B)(E)K(S)(E)(N)T	PRO74013
106.	Silicone Rubber Sealant (RTV-560)	PRO74017
107.	Silicone Rubber Sealant (RTV-162)	PRO74016
108.	NIL4	PRO74018
109.	Product A(G)M-9	PR074009
110.	Nitrocellulose Glue AK-20	PRO74010
111.	Varnish AK-113	PRO74011
112.	Under paint Putty (I) (P)-0080	PR074012
113.	Putty XB-004(G)O(S)T	PR074014
114.	Enamel XB-5169	PRO74015
115.	Washer	PRO74020
116.	Section 4 Charging Rig & Adaptor	PR074021
117.	08 Types of Compensator	PRO70628
118.	Secure Hardware Encryption Device	PRO70627
119.	Low Cost Autonomous Under Water Swarns	PRO70626
120.	GT Air Intake Filter Bags for LM 2500 GT	PRO70441
121.	Screw Pumps	PRO70440
122.	Centrifugal Pumps	PRO70439
123.	Helo Fuel Transfer Pump	PRO70438
124.	Hydraulic Pump for Guardrail on Deck 5/ Pump for Ammunition	PRO70437
125.	PGV Transfer Pump	PRO70436
126.	Hydraulic System Pump	PRO70435

	_ • •	
<u>Ser.</u>	Description	<u>Srijan Portal ID No.</u>
127.	Static Frequency Converter (SFC Type 2) DC-AC, 220V, 400Hz,	PRO70434
128.	Static Frequency Converter (SFC Type1) DC-AC, 127V, 50Hz,	PRO70433
129.	Low Pressure Air Compressor	PRO70430
130.	Helo Starting Converter	PRO70427
131.	Anchor Windlass Motor	PRO70426
132.	40 KVA UPS	PRO70423
133.	Rectifiers	PRO70422
134.	Autonomous Surface Vehicle	PRO60908
135.	Deep Sea Side Scan Sonar Towing Winch	PRO61047
136.	Digital Beam forming Based Satellite TV System	PRO61048
137.	Expendable Under Water Target	PRO61049
138.	Manipulator	PRO59625
139.	Machinery Health Monitoring System	PRO70410
140.	Converter Unit	PRO70405
141.	TBU Diaphragm	PRO70404
142.	23 Type of Generic Instrumentation	PRO70403
143.	Bilge Pump Motor 8 kW	PRO70392
144.	Ventilation Motor, 11 kW 380V 3ph 50Hz 2880rpm Star	PRO70391
145.	Ventilation Motor, 7. 5kW 380V 3ph 50Hz 2925rpm Star	PRO70390
146.	Ventilation Motor, 3 kW 380V 3ph 50 Hz 2880rpm Star	PRO70389
147.	Ventilation Motor, 2.2kW 380V 3ph 50Hz 2895rpm Star	PRO70388
148.	Pre Lube Oil Pump Motor. 3.3kW 380V 3ph 50Hz 1685rpm Star	PRO70387
149.	Hangar Ventilation Motor. 18.5kW	PRO70386
150.	Lift Motor. 5.5kw 380V 3ph 50Hz 915 rpm Star Winding	PRO70385
151.	Bottle Head Assembly 280 Bar	PRO70384
152.	Bottle Head Assembly 200 Bar	PRO70383
153.	Window Wiper Assembly	PRO70382

Ser.	Description	Srijan Portal ID No.
154.	GTG RPM Measurement &	
_	Indication System	PRO70378
155.	Leaf Spring	PRO70375
156.	GT Air Intake Filters	PRO70374
157.	Marine Sewage Treatment Plant for Future Platforms	PRO70370
158.	Limpet Mines (7 Kg & 15 Kg)	PRO70369
150.	Flood Warning System	PRO70368
160.	Electrically Actuated Valves	PRO70367
161.	High Endurance Autonomous Underwater Vehicle (HEAUV)	PRO60906
162.	Desalination/Bilge-Oily Water Separation	PRO61046
163.	Proximity DA Fuze for 76/62 SRGM with Universal Capability	PRO60902
164.	Effectors for Anti-Torpedo Countermeasure System	PRO60904
165.	Three Phase Inverter for Maritime Patrol ELTA Radar	PRO60898
166.	Upper Air Sounding System	PRO60896
167.	Sluice Valve	PRO59713
168.	06 Types of System Valve	PRO59627
169.	41 Types of SW/FW System Valve	PRO59629
170.	07 Types Filters	PRO59635
171.	Window Wiper Assembly	PRO59638
172.	Marine Grade Aluminum Plate 6-30 mm	PRO61051
173.	AI Based SCM and Logistics	PRO61045
174.	4G/LTE Tactical LAN	PRO60881
175.	Unmanned Surface/Underwater Vehicles	PRO60886
176.	Development of C & Ku Band Terminal Antenna	PRO60889
177.	Ejection Seat Cartridge Set (Part No.MBEU92514	PRO77552
178.	Command Ejection Cartridge Set (Part No.MBEU60228	PRO77553
179.	Engine Fire Bottle Squib (Right) (Part No.30903871)	PRO77554

•		
<u>Ser.</u>	Description	<u>Srijan Portal ID No.</u>
180.	Engine Fire Bottle Squib (Left) (Part No. 30903872)	PR077555
181.	Socket and Washer	PRO78485
182.	Fin Stabiliser System	PRO78487
183.	06 types of Limit Switch	PRO78517
184.	Hose for IDA 59 M, 70 nos.	PRO78519
185.	Cathelco Anode, 12 nos.	PRO78520
186.	Portable Smoke Generator-NBCD, 30 nos.	PRO78521
187.	Anchor Cum Mooring Capstan	PRO78882
188.	SSM Loader	PRO78884
189.	ONEGA Control System	PRO78886
190.	ECHO Sounder	PRO78887
191.	Type II Battery (Second Source)	PRO78888
192.	Helo Deck Communication System	PRO78890
193.	Water Pump	PRO78892
194.	85 KW DC Motor with Starter for HP Air Compressor	PRO78894
195.	Thermal Imaging Camera 81 Nos	PRO78895
196.	Two Types of Universal Variator	PRO78896
197.	Indicator Buoy	PRO79007
198.	Buffer Metalastik	PRO79013
199.	07 Types of OBBM Coolers	PRO79511
200.	Buoyancy Under Water Glider	PRO79660
201.	Supersonic Weapon Imitating Flying Target (SWIFT)	PRO79661
202.	Integrated Stand Instrument System (ISIS)	PRO79662
203.	14 Types of Hoses	PRO90499
204.	76/62 mm SRGM Ammunition	PRO90670
205.	UPS 60KVA	PRO90708
206.	Coupling Unit	PRO94058
207.	Data Acquisition and Processing Unit	PRO94059
208.	Unit HF Trans Receiver	PRO94085
209.	Control and Monitoring Unit	PRO94082
210.	Onboard Oxygen Generation System	PRO94083
211.	Optical Mechanical Unit	PRO94084

Ser.	Description	Srijan Portal ID No.
212.	Aircraft Accessory Gearbox	PRO94086
213.	Head Up Display	PRO94087
214.	Hydraulic Pump of Main Hydraulic	
	System	PRO94116
215.	Gear Box Oil Cooler	PRO94117
216.	Multi-Functional Display	PRO94118
217.	Antenna Coupler Unit	PRO94088
218.	Multifunctional Display	PRO94089
219.	Short Range Navigation System	PRO94090
220.	Air Data Computer	PRO94091
221.	Control Actuator	PRO94092
222.	Control Actuator	PRO94093
223.	Video Data Processor	PRO94094
224.	Specialized Digital Computer	PRO94095
225.	Air to Air Receiver	PRO94096
226.	Trans receiver	PRO94097
227.	Generator Drive	PRO94098
228.	Adjuster, Protection and Control	DD 00 4000
	Unit	PRO94099
229.	Limiting Signal Computer	PRO94100
230.	Data Exchange Unit	PRO94101
231.	MLS Receiver	PRO94102
232.	Mission Computer	PRO94103
233.	Integral Sensor Unit	PRO94104
234.	Plunge Pump	PRO94105
235.	DC Generator	PRO94106
236.	Navigation and Landing Unit (NLU)	PRO94107
237.	Unit (Radar Exciter)	PRO94108
238.	Unit (Radar Transmitter)	PRO94109
239.	Integral Drive Vane	PRO94110
240.	Microwave Landing System (MLS)	
	Receiver	PRO94111
241.	20.1" Display	PRO94112
242.	Lift Transducer	PRO94113
243.	INS-GPS (TNL-16G)	PRO94114
244.	Speed Control Indicator	PRO94115
245.	Glide SSM	PRO96221
246.	Light Weight High Speed Marine	
	Engine for Naval Boats	PRO96224

<u>Ser.</u>	<u>Description</u>	<u>Srijan Portal ID No.</u>
247.	5M ³ /H Oily Water Separator (OWS) System	PRO96209
248.	Ship Based Rukmani SATCOM Terminal	PRO96213
249.	Turbo Charger for P-75	PRO96225
250.	127 mm Guided Projectile	PRO96212
251.	30 mm Ammunition for Naval Surface Gun	PRO96489
252.	Medium Speed 6 MW Marine Diesel Engine	PRO96136
253.	URAN SSM Complex FCS (KASU)	PRO96231
254.	Electro-Optical IR Search and Track System (EOIRST)	PRO96138
255.	127 mm Medium Calibre Gun	PRO96184
256.	30 mm Naval Surface Gun	PRO96488
257.	Alternate Emergency De-ballasting System onboard SSK/ P-75 Submarines	PRO97621
258.	76/ 62 SRGM High Explosive (HE) and High Explosive Pre Formed Fragmented (HEPFF) Ammunition'	PRO97619
259.	12 MW Electric Propulsion for ships	PRO100815
260.	76mm Super Rapid Gun Mount	PRO97617
261.	4MW Marine Gas Turbine based Electric Power Generator	PRO100816
262.	Extra Large Unmanned Underwater Vehicle(XLUUV)	PR0100819
263.	Ship Born Laser Weapon System (30 KW)	PRO100821
264.	Next Generation Helo Harnessing and Traversing System	PRO97618
265.	Semi-Submersible Autonomous Vessel for Intelligence, Operations and Reconnaissance (SAVIOR)-ASW	PRO100812
266.	Compact Autonomous Surface Craft All Domain Effects – Anti Submarine Warfare (CASCADE-ASW)	PRO100813
267.	Shore Based Guided Rockets (SB- GR) System	PRO100814

	Description	
<u>Ser.</u>	Description	Srijan Portal ID No.
268.	RU Tank Changeover Cock	PRO101601
269.	Valve Pressure Reducing	PRO101603
270.	Hamilton Valve	PRO100923
271.	Auto Release Hook	PRO106217
272.	Treatment Panel Conductivity Transmitter	PRO96551
273.	Air Data Computer	PRO 94317
274.	Mandatory Overhaul Spares of DE59 GT (SNFs)	PRO125563
275.	Ground Handling Equipment (GHE) for Air Loading of IN DSRV System	PRO125564
276.	Integrated SATCOM Multifunction System (ISMS) (Multifunctional Antenna AT-4125 for P-75 Submarine	PRO125565
277.	Leveraging Health and usage Monitoring Systems (HUMS)	PRO125567
278.	Composite WT/GT Doors and Hatches for <i>IN</i> Ships	PRO125568
279.	Indigenous Water Jet Propulsion Systems for Ships	PRO125569
280.	Composite Material Sea Water Pumps (40TPH & 125 TPH)	PRO125570
281.	VLF Loop Antenna including the Below Deck Interface Equipment for Kalvari Class	PRO125571
282.	VLF-HF Matrix including the interface equipment for Kalvari Class of Submarine	PRO125572
283.	Use of Composite Technology for Bottles Storing Hydrogen and HP Air for Submarine	PRO125573
284.	Marine Desalinators for Life Rafts Onboard for Ships	PRO125574
285.	Tide Efficient Gangway	PRO125575
286.	SSPA State 2 Amplifier for AMDR	PRO125576
287.	Underwater Launched Unmanned Aerial Vehicle (ULUAV)	PRO125577
288.	Motor for Pump-Jet Propulsion	PRO125676

	_ • ••	
<u>Ser.</u>	Description	<u>Srijan Portal ID No.</u>
289.	RF Components of EW System Components	PRO125679
290.	Buoyant Cable Antenna for P-75	PRO125684
291.	Wireless Aircraft Flight Data Recorder	PRO125687
292.	Quantum Encryption Modules for Secure Satellite Communication	PRO125732
293.	16 Core Advanced Hybrid Armoured Fibre Optic Under Sea Range Cable	PRO125733
294.	Naval Aerial Robotic System	PRO125734
295.	Economiser Coils (Elements) for VKD	PRO125736
296.	Battery Fan and Boat Fan with DC Motor	PRO125751
297.	KAC 1-14 Card for Burya Control System	PRO125752
298.	Deck Rim	PRO125753
299.	Pilot Register & Servo Driven Register	PRO125754
300.	MPU & MK-300 Cards	PRO125755
301.	Forward DG Sets Incident Level Detector	PRO125756
302.	Ultrasonic Level Detector on NP16 Flange (High & Low Level Sensor)	PRO125757
303.	Ultrasonic Level Detector for Bilge with Clamp (High & Low Level Sensor)	PRO125758
304.	Fuel Tank Inlet Motorised Valve (Actuator)	PRO125759
305.	Motor of Fuel Valve (Actuator)	PRO125760
306.	Magnetised Float Level Detector	PRO125761
307.	Flowmeter ND40 on Fresh Water Circuits	PRO125762
308.	ND80 Flowmeter on Fresh Water Circuits	PRO125763
309.	Flowmeter ND80 on Fresh Water Circuits	PRO125846
310.	Lithium Battery 28 V	PRO125847
311.	Lithium Battery 28.8 V, 13Ah	PRO125848

Cor	Description	Srijan Dartal ID Na
<u>Ser.</u>	Description	Srijan Portal ID No.
312.	Lithium Cell Assembly	PRO125849
313.	Ni-Cd Battery 12 V, 1.8Ah	PRO125850
314.	Water Tight Battery 24V, 2A, LR 20 Alkaline	PRO125851
315.	Ni-Cd Battery 3.6 V, .9A	PRO125852
316.	Flow Indicator	PRO125853
317.	Shaft Cooling S/W Flow Detector	PRO125854
318.	Flow Indicator	PRO125855
319.	Turbo Condensate Pump Motor 7.5KW, 380V,3ph,50Hz,2895rpm Star winding	PRO125856
320.	Boiler Chemical Cleaning Pump Motor 4 KW, 380V, 3ph,50Hz, 2880 rpm Star winding	PRO125866
321.	Stripping Pump Motor 4KW, 380V,3ph,50Hz,2895 rpm Star Winding	PRO125867
322.	Feed Water Transfer Pump Motor 4KW, 380V, 3ph, 50Hz, 2880 rpm Star Winding	PRO125868
323.	Boat Davit Motor 37KW, 380V,3ph,50Hz,1310 rpm Star winding	PRO125869
324.	02 Types of Butterfly Valves	PRO125870
325.	02 Types of SDNR Valves	PRO125871
326.	Butterfly Valve for Suction	PRO125872
327.	Butterfly Valve Dia 125 mm	PRO125873
328.	Ring Sealing/ Packing of Indicator Valve on the Block	PRO125874
329.	Fixture for Rolling Out Shell and Inserts	PRO125875
330.	Pumping Unit With Hydraulic Drive AGN 25/25	PRO125876
331.	High Pressure Fuel Supply Line	PRO125877
332.	Protector (F) 1301-75	PRO125878
333.	Oil Pump for CO ₂ Compressor	PRO125879
334.	Hot & Cold Water Pressure Reducer	PRO125880
335.	Pressure Air Ejector	PRO125881
336.	Periscope Lower Cup Seal	PRO125887

Ser.	Description	Srijan Portal ID No.
<u>337.</u>	Periscope Upper Cup Seal	PRO125888
338.	Packing	PRO125889
339.	Hand Pump Cup Seal	PRO125890
340.	6 Cargo LSHD Hose, L-4.5 m	PRO125891
341.	6 Cargo LSHD Hose, L-9 m	PRO125892
342.	4 Cargo AVCAT Hose, L-4.5 m	PRO125893
343.	4 Cargo AVCAT Hose, L-1 m	PRO125894
344.	2.5 Cargo F1ry Hose, L-4.5 m	PRO125895
345.	2.5 Cargo FW Hose, L-9 m	PRO125896
346.	Valve Starting Packing Ring in Cylinder Head	PRO125897
347.	Bottle Head Assembly Unit with Charging/ Discharge & Gauge Relief Valve	PRO125898
348.	MD Turning Reducer	PRO125899
349.	Bilge Drying Pump (1B1 Pump) without Motor	PRO125900
350.	Valve Shut off Angular Bronze	PRO125901

PAGE LEFT BLANK INTENTIONALLY

<u>Appendix 'N'</u> (Refers to Para 4 Chap 10)

CO-ORDINATING DIRECTORATES

Directorate of Indigenisation NHQ/ MoD, W 402, 4th Floor, West Wing, Nau Sena Bhawan, Delhi Cantt, New Delhi 110010 Telephone: 011-28702777, Fax: 011-28702773 Email ID: doi-navy@nic.in

Directorate of Armament Production and Indigenisation, NHQ/ MoD, West Block V, RK Puram, New Delhi 110066 Telephone: 011-26194691, Fax: 011-26194273 Email ID: dapi.ihg@navy.gov.in

Directorate of Air Projects and Plans NHQ/ MoD, 5th Floor, 'D' Block, Defence Offices Complex, Africa Avenue, New Delhi 110023 Telephone: 011-26771521, Fax: 011-20867649 Email ID: dapp@navy.gov.in

Directorate of Indigenisation Naval Headquarters Ministry of Defence